HGCROC-V2 summary of results B. Akgun, G. Bombardi, J. Borg, F. Bouyjou, E. Delagnes, F. Dulucq, M. El Berni, P. Everaerts, S. Extier, M. Firlej, T. Fiutowski, F. Guilloux, M. Idzik, C. de La Taille, A. Lobanov, A. Marchioro, J. Moron, L. Raux, K. Swientek, D. Thienpont, T. Vergine 28 January 2020 # **HGCAL: CMS EndCap Calorimeters for the LHC Phase-II upgrade** ### New Endcap Calorimeters - Rad. Tolerant - High Granularity: increased transverse and longitudinal segmentation, needed to mitigate pileup effects to select events with a hard scatter process at L1 Trigger and to identify the associated vertex and particles - Precise timing capability: further mitigation of pileup effects # **Development history** - Jan 16: SKIROC2 CMS [TWEPP 2016] - SiGe 350 nm 7x9 mm² - Dedicated to test beam and analog architecture (TOT) - May 16: 1st test vehicle TV1 - CMOS 130 nm 2x1 mm² - Dedicated to preamplifier studies - Dec 16: 2nd test vehicle TV2 [TWEPP 2017] - CMOS 130 nm 4x2 mm² - Dedicated to technical proposal analog channel study - July 17: HGCROCv1 [TWEPP 2018] - CMOS 130 nm 5x7 mm² - All analog and mixed blocks; large part of digital blocks - Feb 19: HGCROCv2 (this talk) - CMOS 130 nm 15x6 mm² - Silicon and SiPM versions (for both 2 and 2A) - Final size, packaging and I/Os # **HGCROCv2** overview #### Overall chip divided in two symmetrical parts - 1 half is made of: - 39 channels: 18 ch, CM0, Calib, CM1, 18 ch (78 channels in total) - Bandgap, voltage reference close to the edge - Bias, ADC reference, Master TDC in the middle - Main digital block and 3 differential outputs (2x Trigger, 1x Data) #### **Measurements** - Charge - ADC (AGH): peak measurement, 10 bits @ 40 MHz, dynamic range defined by preamplifier gain - TDC (IRFU): TOT (Time over Threshold), 12 bits (LSB = 50ps) - ADC: 0.2 fC resolution. TOT: 2.5 fC resolution - Time - TDC (IRFU): TOA (Time of Arrival), 10 bits (LSB = 25ps) #### Two data flows - DAQ path - 512 depth DRAM (CERN), circular buffer - Store the ADC, TOT and TOA data - 2 DAQ 1.28 Gbps links - Trigger path - Sum of 4 (9) channels, linearization, compression over 7 bits - 4 Trigger 1.28 Gbps links #### **Control** - Fast commands - 320 MHz clock and 320 MHz commands - A 40 MHz extracted, 5 implemented fast commands - I2C protocol for slow control ### **Ancillary blocks** - Bandgap (CERN) - 10-bits DAC for reference setting - 11-bits Calibration DAC for characterization and calibration - PLL (IRFU) - Adjustable phase for mixed domain # **Analog Channel Overview** **O**mega Compensation for the leakage current, 10 µA max. (not shown in Sallen Key shaper RC4, tp<25 ns, tunable (~20%) with 2 bits, • New calibration pulser, 0.5pF and 8 pF calibration cap. 500 400 - Preamp: adjustable gains for 80, 160 and 320 fC ranges - Tunable TOT over 5 bits 100 Charge [fC] TDC (50 ps) **HGCROC2 CALICE 4 mar 20** the figure) # Pulse shape ## **FlipChip** - No digital coupling on preamp inputs - w/o sensor capacitance, noise = ~1 ADC (0,22 fC) ## **BGA** - Digital coupling on preamp inputs (20 ADC; 3,6 fC) - w/o sensor capacitance, noise = ~1,25 ADC (0,27 fC) # noise - 2000 electrons ENC at 47pF Cdet for "gain" 80 and 160 fC - 2800 electrons ENC at 47pF Cdet for "gain" 320 fC - Coherent noise extracted by comparing direct and alternate sums on n channels (n = 72): $DS = \sum ped[i]$; $AS = \sum (-1^i)ped[i]$ - Incoherent noise $IN = rms(AS)/\sqrt{n}$ - Coherent noise $CN = \sqrt{var(DS) var(AS)}/n$ - Coherent noise fraction : CNF = CN / IN - FlipChip, CNF = 5%. BGA, CNF = 10% # **Charge ADC range: linearity, residuals** - Two 10b-DAC to globally set the pedestal to a wanted level - 5b-DAC to reduce dispersion per channel - Good linearity in-between +/- 1% - Noise 1-2 ADC counts depending on Cd ## MasterTDC optimization applied but not ch-wise ## 8 pF injection Cap. 8 pF injection Cap. "Flip-Chip" board Fine channel-wise adjustment has to be applied to further improve resolution performance # Bandgap and temperature measurements - Bandgap value moves over 2mV between -40°C and +40°C, but lower shift around -20°C - ~ 6-8 mV increasing after 300 Mrad - Pedestals - 1 ADC/°C in room temperature - ~ 0,4 ADC/°C around -30°C # Gain as a function of the temperature Pedestals value as a function of the temperature # **Irradiation testing: TID** ## Analog probes - Consumption - All currents decrease, except that of PLL - Bias, reference, bandgap and pedestal - Vbo_discri to be improved ## ADC - Start to misbehave after 100Mrad - Recover correct operating after annealing - Redo at cold temperature ## TDC - Start to misbehave after 100Mrad - Still problems after annealing - Under study ## DRAM - No problem observed - Retention time to be checked - PLL - VCO voltage shift - Survived 310Mrad #### After 2 days annealing # **Plans for CALICE** - AMS SiGe is discontinued => move to TSMC65/130n - Adapt HGCROC to CALICE - Add power pulsing - Slow down shaper and ADC - Remove TOT - Remove trigger path - Remove timing branch? - Anticipate < 5 mW/ch * 1% duty cycle = 50 uW/ch</p> - More work needed to further optimize power consumption - Could be prototyped in 2021 or 2022 depending on workload @Omega # **Power consumption** - ~ 10 mW per channel - Too high current in vdd_adc right - Understood, comes from Vref_m - Vref_m will be connected to ground in V3 | | | chip1 | chip2 | | |----|---------------|-------|-------|-------| | 1 | vdd_tdc_l | 4 | 4 | mA | | 2 | vdd_buf_l | 65 | 68 | mA | | 3 | vdd_adc_l | 17 | 17 | mA | | 4 | vdd_sk_l | 39 | 40 | mA | | 5 | vdd_dac_l | 27 | 27 | mA | | 6 | vddd2_l | 11 | 12 | mA | | 7 | vddd_l | 22 | 23 | mA | | 8 | vdd_sc | 0 | 0 | mA | | 9 | vddd1 | 38 | 41 | mA | | 10 | vddd_r | 23 | 23 | mA | | 11 | vddd2_r | 12 | 12 | mA | | 12 | vdd_pll | 4 | 4 | mA | | 13 | vdd_tdc_r | 4 | 4 | mA | | 14 | vdd_adc_r | 68 | 73 | mA | | 15 | vdd_buf_r | 66 | 64 | mA | | 16 | vdd_sk_r | 39 | 43 | mA | | 17 | vdd_dac_r | 27 | 28 | mA | | | | | | | | | TOTAL sans PA | 466 | 483 | mA | | | TOTAL | 650 | 650 | mA | | | vdd_pa | 184 | 167 | mA | | | | | | | | | conso/ch | 10 | 10 | mW/ch | # **Irradiation testing: TID** - Analog probes - Consumption - · All currents decrease, except that of PLL - Bias, reference, bandgap and pedestal - · Vbo_discri to be improved - ADC - Start to misbehave after 100Mrad - Recover correct operating after annealing - Redo at cold temperature - TDC - Start to misbehave after 100Mrad - Still problems after annealing - Under study - DRAM - No problem observed - Retention time to be checked - PLL - VCO voltage shift - Survived 310Mrad #### After 2 days annealing