A relation between track length and deposited energy in homogeneous calorimeter by GEANT4 simulation at high energy

Tohru Takeshita - Shinshu CHEF2019@Fukuoka

T.Takeshita : CHEF2019@Fukuoka

bbjes from Higgs factory

2

- Ebjet~50-100GeV at HF
- Energy Resolution of Jets (JER) PFA is degraded
- due to HCAL E-resolution intrinsic
- PFA does work well at higher energies
- to improve Jet EReso.
 50-100 GeV region
 Eparticle<10GeV

T.Takeshita : CHEF2019@Fukuoka

Particle Flow Algorithm

- PFA requires 3D calorimeter
- with fine segmented cells
- to separate each particles
- JetER is dominated by HCA R at lower energies
- intrinsic resolution of HCAL
- measure total hadrons
 best case
 hoping fine segmentation

<u>ee>ZH>jj+jbjb</u>

total measurements

- GEANT4 simulation 2mx2mx2m Hadron model = FTFP-BERT
- homogeneous CAL. for exam: absorber : PbW04
- two measures from the calorimeter
- ED : dEdx « scintillation
 ³ GeV pi how much ER at best ?
 green lines

are neutrons

4

PbW

ED and TL

for 5GeV pi-

resolution~13% @ 5GeV

resolution~30% @ 5GeV

ED=sum of energy deposit - sum of scintillation lights in PbWO4 - sum of Cherenkov lights in PbWO4

TL= sum of track lengh

ED vs TL

strong correlation between ED vs TL

approx. in linear with constant term in ED

how to measure

- energy
- from EI
- use hea
- ED ~ dE

2

- TL ~ Ch
- MPPC+:
- MPPC+^{due}
- T.Takeshita : CHEF2019 **Fu**kuoka

MPPC+glue:scintillation && Cherenkov_light;

e to total reflection of Cherenkov angle

summary and outlook

- homogeneous calorimeter is simulated
- found a linear relation between ED and Eabs:Labs
 TL

4000

3000

1000

1000

5098

7674

1401

878.6

Entries

Mean x

Mean y

Std Dev x

Std Dev

pi+10GeV

- super energy resolution
- ED ~ scintillation light
- TL ~ Cherenkov light
- test calorimeter with PbWO4

discussion

discussion

- reason of intercept
- muon+ : <200MeV uniform injection
- non-linear
 response close to
 0=ED

dE/la

$\begin{array}{c} \text{Fighil: } \approx \sqrt[7]{\sqrt{B}} \approx (\text{resolution})^{-2} \\ \hline \\ \text{PFA utilises} \\ \text{o tracker for charged} \\ \text{o ECAL for photons} \end{array}$

HCAL for KoL

particle energy in jet

- particle energy distribution
- E<10 GeV dominating

PbW04

Scintillation properties of lead tungstate (PbWO4) crystals:

Density (g.cm ⁻³)	8.28
Radiation length (cm)	0.92
Decay constant (ns)	6/30
Emission peak (nm)	440/530
Light yield (% that of Nal:TI)	0.5
Melting point (°C)	1123
Hardness (Mho)	/
refractive Index	2.16
Hygroscopicity	none
Cleavage	101