

Analysis of SiW-ECAL technological prototype beam test with electron beam

Y. Kato^B, K. Goto^A, T. Suehara^A and ILD SiW-ECAL group Kyushu University^A The University of Tokyo^B

> CHEF2019 @ Fukuoka, Japan 29th Nov. 2019

katou@icepp.s.u-tokyo.ac.jp

Table of Contents

- R&D of SiW-ECAL technological prototype
 - FEV13-Jp Status
- Beam Test 2019
- Procedure for Energy Measurement
- Analysis
 - Trigger adjustment
 - Masked channels
 - Pedestal uniformity / stability
 - MIP calibration
 - Shower
- Remaining Issues

International Large Detector

One of the detector concepts at the ILC

Optimized for Particle Flow Algorithm
 Reconstruct & identify all the particles

Components

- Vertex detector
- Trackers
- Calorimeters
 - ECAL
 - ScW-ECAL
 SiW-ECAL
- HCAL
- Muon Yoke

29th Nov. 2019

R&D of SiW-ECAL technological prototypes

<u>Major changes in FEV11 \rightarrow 13 and SMBv4 \rightarrow v5</u>

- > ASIC: SKIROC2 \rightarrow 2A
 - Individual threshold control
 - Improvements on TDC
- Smaller SMB footprint
- Connection by 0.4mm-pitch flex cables
 - Two candidates, footprint compatible

Analogue core: SKIROC2A

29th Nov. 2019

FEV13-Jp Status

- ASIC: SKIROC2A
- Si thickness: 320µm & <u>650µm</u> New!
 - 256 ch/sensor × 4 sensor/slab
- FEV-SMB Connection: Flexible cable or Micro-coaxial cable
- EM shielding: w/ Carbon frame and cover
- Power Pulsing

Beam Test 2019 @ DESY

- Beam time:
 - 24th June 7th July at DESY test beam facility
 - e⁻ beam: 1 5 GeV
- Presence from:
- Support & Hardware from:

OMEGA LIR

Yu Kato, CHEF2019

C SUNC

Beam Test 2019 @ DESY

- Beam time:
 - 24th June 7th July at DESY test beam facility
 - e⁻ beam: 1 5 GeV
- Objectives:
 - Comparison of ASU based on BGA and based on Chip-On-Board (COB)
 - Test of new SL-Boards (SLB)
 - Validation of FEV13-Jp ← Target of this talk
- Programs:

MIP program (w/o Tungsten)

- Position scan for MIP calibration
- TDC test
- Angled beam: 25 deg.
- <u>Retriggering / double pedestal</u>

Shower program (w/ Tungsten)

- Energy measurement
- Response from large signal
- TDC / auto gain
- Edge effect

Setup for Beam Test

- Devices: 2 types of readouts
 - DIF based slabs: FEV13-Jp × 5
 - SLB based slabs:
 - \circ COB \times 2
 - FEV12 × 2
- Absorber: Tungsten

• $X_0 = 3.5$ mm, $R_M = 9$ mm, $\lambda_0 = 96$ mm

29th Nov. 2019

Procedure for Energy Measurement

Single Slab Analysis

- 1. Trigger adjustment & Masking of noisy channels
- 2. Pedestal calibration

16 chips × 64 channels × 15 memories

3. Gain calibration using MIP

16 chips \times 64 channels

Multi Slab Analysis [in progress]

 Timing coincidence using bunch crossing ID (BCID): Δt = 0.2 μs
 Event Building

Trigger Adjustment

29th Nov. 2019

Masking of Noisy channels

- A few channels are noisy after trigger adjustment and masked: 1 2 %.
- Individual threshold control was not used because it wasn't ready. → Next TB
 slab P1
 slab P2
 slab P3

29th Nov. 2019

Pedestal Analysis

- Non-triggered ADC output (around ~300 [ADC])
- Fitted by Gaussian

lowGain[13][0][39] {lowGain[13][0][39]>250&&lowGain[13][0][39]<500&&badbcid[13][0]=+0}

Pedestal Uniformity: Mean

- Mean of Gaussian
- Result of 1st Memory (Memory-cell dependence is referred later.)

mean of pedestals looks generally uniform within the same chip.

29th Nov. 2019

Pedestal Uniformity: Width

Width of pedestal is almost uniform (3~4) throughout.

29th Nov. 2019

Pedestal Stability

• Pedestal stability is confirmed in this beam time.

MIP event

- MIP program is performed for mainly energy calibration of all the pixels.
- Hit map: Sum of the triggered events
- Event display: ADC output of single event after event building

MIP spectrum

slab	P1	P2	P3	K1	K2
thickness	650µm	650µm	320µm	650µm	650µm
MPV	146.5	144.9	71.3	141.4	146.1
Ped_width	3.0	3.0	3.3	2.8	3.1
S/N	49.0	48.9	21.7	50.2	47.5

MIP calibration: Summary

29th Nov. 2019

Shower event

- Using the preceding results, we can finally build events.
 - BCID offsets between SLB-based and DIF-based are corrected.
- A typical event is checked with event display.
 - In this picture, color scale is not converted to energy, still ADC output.

Shower Analysis: Hit Energy

Hit energy after MIP calibration (run 42003)
 Single cell hit energy in 3 GeV e beam

29th Nov. 2019

Simulation

- We performed detector simulation for this beam test.
- Simulator: DDSim in iLCSoft

29th Nov. 2019

Comparison of Measured and Simulated.

- Simulated results are converted to MIP units and compared to measured ones.
- Work in progress.

TDC Analysis

- TDC mode operation test
- SKIROC2/2A has the ramp wave as one of the internal clocks
 - · I measured this ramp waveform for calculating from TDC to real time factor
- · The ramp wave can be measured with
 - synchronization of internal and external clock (injection signal)

Yu Kato, CHEF2019

29th Nov. 2019

TDC Correlation with MIP

Correlation of TDC between slab P1 and P2

- Select 1 ch (at the center of the beam), 450 < ADC < 500 (to avoid time-walk)
- ~10 / 1 ns at the normal slope: timing resolution ~ a few ns?
- TDC calibration in progress.

Correction of Time Walk

- Time Walk: TDC dependence on ADC
- TDC-interval vs ADC are fitted by Log function.
- Width of TDC-interval is improved: $117 \rightarrow 52$.

Pretin

inany

29th Nov. 2019

Remaining Issues

29th Nov. 2019

Double pedestal / Retrigger

29th Nov. 2019

Pedestal difference between ADC/TDC mode

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In the first memory cell, the difference of typical Ped_mean is ~15.

12

Pedestal difference between ADC/TDC mode

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In TDC mode, SCA~2 is worse.

Pedestal difference between ADC/TDC mode

- We found the difference of pedestals between ADC/TDC mode.
- Memory-cell dependence is not same.
- In TDC mode, SCA~2 is worse.

Work in progress.

Summary

• FEV13-Jp: 5 slabs from Kyushu U.

• BT 2019 DESY: All the slabs worked consistently.

- Pedestal study
 - Uniformity and Stability is verified.
- MIP calibration
 - MIP calibration is almost completed.
 - S/N is obtained for 5 slabs:

slab	P1	P2	P3	K1	K2
thickness	650µm	650µm	320µm	650µm	650µm
S/N _{ADC}	49.0	48.9	21.7	50.2	47.5

- Shower analysis
 - Event building has done and shower event is seen in event display.
 - We take a look at hit energy which is consistent with simulation result.
 - Work in progress.

TDC test

- Time walk is corrected, but very preliminary.
- Timing resolution is obtained, however we need more detail study using injection.
- Several issues remain:
 - Retriggered events are removed practically although the cause is still unknown.
 - In TDC mode, pedestals become worse because of retriggers.

backup

29th Nov. 2019

Hardware update

- Previous problems
 - Carbon frame was not optimized for FEV13.
 - HV connection between SMB and flex was fragile.
- Update: New carbon frame

Hardware update

- Previous problems
 - Carbon frame was not optimized for FEV13.
 - HV connection between SMB and flex was fragile.
- Update: Conductive adhesion

29th Nov. 2019

29th Nov. 2019

R&D of SiW-ECAL technological prototypes

ASU: 12 years of R&D

Most complex element: electro-mechanical integration

- Distrib / Collect signals from VFE (ASICs), Analog & Digital with dyn. range ≥ 7500
- Mechanical placer & holder for Wafers → precision
- Thickness constraints

FEV11

Milestone	Date	Object	Details	REM
1"ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, fim @ 2000 mips
1" ASIC	2009	SK2	64ch, 15 SCA	3000 mips
1 ^{er} prototype of a PCB	2010	FEV7	8 SK2	COB
1" working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
1" working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N – 14 (HG), no PP retriggers 50– 75%
1" run in PP	2013	FEV8-CIP		BGA, PP
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17-18 (High Gain) retrigger ~ 50%
1" SLABs	2016	FEV11	7 units	
pre-calo	2017	FEV 11	7 units	S/N ~ 20 (12) _{tre} 6-8 % masked
1 st technological ECAL	2018	SLABvFEV11 & FEV13 SK2a+ Compact stack	SK2 & SK2a (otiming)	Improved S/N Timing

Yu Kato, CHEF2019

CALI (CO

R&D of SiW-ECAL technological prototypes

Beam-test 2015-2018

29th Nov. 2019