Consideration on

He Resource Conservation for ILC SRF Cryogenics

A. Yamamoto, T. Okamura, and H. Nakai

To be reported to ILC-TCMB, 3 December 2019

Outline

- Motivation
- Boundary conditions
- An Update suggested: 100% GHe storage, instead of 50/50(%) G-/L- He
- Technical and cost comparisons
- Summary

Motivations to:

 He resource to be 100 % recycled and conserved in the ILC, even in any emergencies and/or power outages more than 3 days.

• Important reasons:

- No natural He resource in Japan, and
- It may become a show-stopper for the ILC stable operation, in particular in Japan.
- We have been experienced with major AC power outages, at least twice: Tohoku Earth Quarke (2011), and in an outstanding Typhone (2019) for more than a week.

Boundary Conditions

- LHe in the ILC SRF system will entirely evaporate within 3 days after stopping the cryogenics or AC power outage,
- He resource need to be recovered as GHe on surface, within 3 days, in any case, by using emergency recovery compressers operational by using emergency AC power generators.
- The minimum fuel (LNG or Oil) to be reserved on site for this operation. (No more LNG/oil is expected in nation-wide critical situation).

A possible solution

- 100% GHe storage
 - (instead of 50/50(%) LHe/GHe storage)
- Continuous operation of Recovery compressor (20 bar) for > 3days
 - to be supported by Diesel/emergency AC power generators.
- 12 (3x4), 20-bar GHe tank is required
 - (instead of 6 Ghe tank + 1 LHe dewar + Liquifier)

ILC Cryogenics Layout-Design Updated in 2017 -- Change Request 09 (CR-09)

refrigerator location kept pending for further study.

ILC Cryogenics Layout-Design Updated in 2017 -- Change Request 09 (CR-09)

2016-8-25 Nakai, Okamura, Makida, and Yamamoto

He Flow Lines in Emergency to Recovery

Operation Sequence in emergency to resume steady state modes (under investigation):

- 1. GHe recovery using RC (powered by Generator for < 24 hrs, (electric capacity: < 1 MW / plant
- 2. Recovery of MC1 (and 2, 3, ...) and Main CB, for LHe to be kept in CM after power-recovery
- 3. LHe to be produced in LHe storage for a period of 5 ~ 7 days, by using RC powered by power line

(Note: Balance of LHe and GHe storage capacity to be further investigated and globally discussed)

A design-update studied in 2017

ILC SRF Cryogenics Operation Modes

ML Cryogenics

2017/3/13 11 / 39

T.Okamura, H.Nakai, A.Yamamoto (KEK)

ILC SRF Cryogenics Operation Modes

ILC SRF Cryogenics Operation Modes

Comparison Item		12 buffer tanks scheme	6 buffer tanks and LHE Dewar scheme		
	buffer tanks	12	6		
	recovery compressor	400kW	400kW		
Cryo components for	small liquefier		280L/h		
recovery system	LHE dewar		42000L		
	cryogenic pipe		4 cryo pipes (3-5m)		
	cryo control system		necessary		
1.4	HP	318.5mm	318,5mm		
Piping through access tunnel	MP	508mm	508mm		
	LP	406mm	406mm		
	LLP	406mm	406mm		
	Recovery line	165.2mm	165.2mm		
exclusive area on surface(m2)		1265	1265		
necessity for building			necessary		
	buffer tanks	6.72	3.36		
	recovery compressor	0.7	0.7		
Cost	Cold box		4.4		
	LHE dewar				
	Transportation	1.8	0.9		
	unloading crane	0.4	0.4		
	Site construction	1.2	0.6		
	SUM	10.82	11.36		

	Comparison Item			12 buffer tanks scheme 6 t		buffer tanks and LHE Dewar scheme		
	buffer tanks			12	1	6		
ry [©]	Recovery t scheme.	ime can be red	uced from	1 week to 3 d	lays in the o	case of G	He storag	ge
•	Manufacturing cost without small liquefaction system is a little bit cheaper than half and half mixing storage scheme. Required surface area is almost same each other. (if config. shown P19 is applied)							
	Storage Scheme		buffer tank	ffer tank Small liquefaction sys		stem Transport etc.		
	12 buffer tanks	w/o small liquefier	6.72	- 0		4.1	10.82	
	6 buffer tanks	w/ small liquefier	3.36	5.4	1.1.	2.6	11.36	
	Storage Scheme unit : (m2)		buffer tank	Small liquefac	ction system	Other, Transport etc.	Total Area	
	12 buffer tanks	w/o small liquefier	46m x 25m	8m x 14m	(RC)		1263	
	6 buffer tanks	w/ small liquefier	23m x 25m	30m x 23m (RC, Lie	quefier, LHe dewar)		1265	
		SUM		10.82		11	.36	

Surface Layout for 2 plants

Surface Layout for 2 plants

Summary (1)

Power Failure

- Instead of Storage Scheme introduced in TDR, not only LHE dewar but also GHE buffer tanks are employed for preventing loss of He inventory during power failure.
- Recovery compressor (RC) should be located on surface but its capacity should be enough small to be operated using LNG generator during the failure. Several hundreds kW can be acceptable. (MW order can not be acceptable.)
- To perform this, recovery mass flow rate during the failure should be reduced. Enthalpy recovery operation seems effective way to reduce the mass flow rate.
- According to the simulation based on toy model, mass flow rate can be reduced to around 30 g/sec. In this case, if 6 tanks with 250 m3 are located on surface, resting state of MCS and MCB for 1.5 days can be acceptable.

The design change already authorized by TCMB

Comparisons of CR-09 and the Update proposed

	CR-09	Update proposed	
# GHe Buffer Tank	6 (3 x 2 layers)	12 (4 x 3 layers)	
Small He Liquefier	Needed	Not needed	
LHe Storage Tank (Reservor)	Needed	Not needed	
Surface area required Lowered base than GL	Baseline Not needed	Equivalent or smaller Needed (~ 3 m)	
Emergency Operation:			
He recovery time: > emergency AC power required	7 days (2 x 3 + alpha)	3 days	
Periodic operation during shut-down	Requird for baby-sitting	Not required	
Redundancy for emergency. required	RCs and He liquefier	RCs only	
Cost	Baseline	Equivalent or lower	

A Design-Update Proposal:

- Simplify the He recovery system:
 - Doubling numbers of GHe storage tank (6 --> 12)
 - Eliminating {small He Liquifier + LHe storage/reservoir}
 - Except for specific location such as a main plant at each e- and e+ linac site for overall backup He reserve: 20 ~25 % for the whole He resource amount, for long term stability and risk management.
 - It may be wise to reinforce the redundancy for the Recovery Compressors (RCs) with an additional backup RC.
- The above design-update may realized much simpler emergency operation with well predicted and limited emergency AC power source.
- No cost-increase is expected, and a minor cost-saving may be expected.

Reserved

Summary (2)

Maintenance and other operation

- When all inventory is recovered for maintenance season, small liquefier is needed. RC can also be applied to small liquefaction system.
- Fraction between Liquid and Gas can be optimized by considering site environmental condition.
 - Recently, we considered 1/2 in Gas and 1/2 in LHE.
 - to be discussed further with Tohoku group.
- Recovery time for the total inventory is within 1 week by using small liquefaction system. To perform this, MCS and MCB have to be operated continuously during recovery mode.
- Tentative stop of the Small liquefaction system such as planned outage can be acceptable. To ensure it, allowable pressure should be 10 bar or so and less heat load into the dewar such as 0.2-0.5 %/day should be used.

Do not need to be concerned, In case of doubling GHe tanks

Evaporated mass vs Buffer tank volume

HE Inventory (kg / plant)		evaporated mass flow	recovery time		Number of 250m3 Buffer tank		
		(kg/sec)	(H)	(Days)	required	contingency	
40K shield	246	0.03	2	0.1			
5K shield	1068	0.03	10	0.4			
2K SRF	6901	0.03353	57	2.4			
1/3 inventory	2738	0.03	25	1.1	4	2	
1/2 inventory	4108	0.03	38	1.6	6	2	
Total inventory	8215	0.03291	69	2.9	11	2	

Recovery Time and Buffer tank volume are shown at around 30 g/sec.

Time to fill up at 30 g/sec.

- 4+2=6 tanks $(1/3 \text{ inventory}) \Rightarrow 25H$
- 6+2=8 tanks (1/2 inventory) \Rightarrow 38H
- 11 tanks (total inventory) \Rightarrow 69H

Further detailed dynamic simulation will be performed continuouslyinstead of using TOY model.T.Okamura, H.Nakai, A.Yamamoto (KEK)ML Cryogenics2016/12/715 / 22