

ILD Tracking Software and Performance

With a focus on the TPC

F.Gaede

LCTPC Meeting, DESY, Jan 14, 2020

- Introduction
- ILD Tracking Tools
- TPC Digitizer
- TPC Pattern Recognition
- Tracking and PID Performance for ILD
- Summary and Outlook

The ILD tracking system

Subdetector			Point Resolution
VTX	$\sigma_{r\phi,z}$	=	3.0 μm (layers 1-6)
SIT	$\sigma_{r\phi,z}$	=	5.0 μm (layers 1-4)
SET	$\sigma_{r\phi}$	=	7.0 μm (layers 1-2, $\phi_{stereo} =$ 7 $^{\circ}$)
FTD_{Pixel}	$\sigma_{r,r_{\perp}}$	=	3.0 μm (layers 1-2)
FTD_{Strip}	$\sigma_{r\phi}$	=	7.0 μ m (layers 3-7, $\phi_{stereo} =$ 7 $^\circ$)
ТРС	$\sigma_{r\phi}^2$	=	$(50^2 + 900^2 \sin^2 \phi + ((25^2/22) \times$
			$(4 \text{ T/B})^2 \sin \theta)(z/cm) \mu m^2$
	σ_z^2	=	$(400^2 + 80^2 \times (z/{\rm cm}))\mu{\rm m}^2$
	where ϕ and $ heta$ are the azimuthal and		
	polar angle of the track direction		

tracking resolutions used in IDR

ILD tracking processors in Marlin

MarlinTrk

- pattern recognition uses *IMarlinTrk* interface
 - $\bullet\,$ can choose actual track fitter w/o code change

tracking geometry: surfaces

- tracking needs special interface to geometry
- measurement and dead material surfaces (planar, cylindrical, conical)
- surfaces attached to volumes in detailed geometry model

surfaces:

- u,v, origin and normal
- inner and outer thicknesses and material properties
- local to global and global to local coordinate transforms:
 - $(x, y, z) \leftrightarrow (u, v)$

DDKalTest

• provides measurement surfaces:

- DDPlanarMeasLayer
 - 1D,2D Si-tracker barrel/endcap
 - dead materials (endcaps)
- DDCylinderMeasLayer
 - 2D hits in TPC
 - supports (cryostat, field cage,...)
- DDConeMeasLayer
 - conical sections of beam pipe

Generic track fitting

 $\bullet\,$ can run track fitting (w/ KalTest Kalman filter) for any detector that defines these surfaces in DD4hep

ILD Tracking Software and Performance

LCTPC Meeting, DESY, Jan 14, 2020 8 / 27

- material properties are **automatically averaged**
 - from detailed model
 - along normal of the surface along given thicknesses

roughly equivalent for Bethe-Bloch - identical for multiple scattering

surfaces and materials

material: comparison surfaces vs. detailed model

• surface describe material well in most regions - but not everywhere

DDPlanarDigiProcessor

- Gaussian smearing of mean hit position from particle's energy depositions
- along u,v measurement directions (2D,1D)
- taken from DDRec::Surface
- used for all Si-Trackers (pixel, strips)

TPCDigiProcessor

- dedicated TPC digitizer:
- parameterized point resolution as function of $(\phi_{\textit{track}}, z_{\textit{drift}})$
- parameterized double hit resolution
 - see next slides For . . .

• simhits are created at position where track crosses the middle-cylinder of the pad row

- using $2 \times \# TPC$ pad rows cylinders of gas
- energy depositions are accumulated over the pad row

point resolution is parameterized as established by LCTPC: $\sigma_{r\phi}^{2} = (50^{2} + 900^{2} \sin^{2} \phi + ((25^{2}/22)(4 T/B)^{2} \sin \theta)(z/cm))\mu m^{2}$ $\sigma_{z}^{2} = (400^{2} + 80^{2} \times (z/cm))\mu m^{2}$

 $\bullet\,$ where ϕ and θ are the azimuthal and polar angle of the local track direction

- two neighbouring sim-hits in the TPC are merged if they are closer than
 - $\Delta r \phi = 2mm$
 - $\Delta z = 5mm$
- with energy weighted mean of the position and the combined deposited energy
- effect in tracking (see later)
- in Clupatra a hit is assigned to the first track segment which has compatible parameters
- no arbitration for individual hit assignements to two neighbouring tracks is done
- there are tracks that simply miss hits in the inner pad rows
- this hardly ever happens for complete track at 250 GeV
 - $\bullet\,$ observed in simulation studies at 1 TeV

TPC Digitizer: Endplate Module Gaps

- implemted module gaps in digitizer: simply remove hits in gaps
- 8 module rows with 14, 18, 23, 28, 32, 37, 42, 46 modules
- 1 mm gaps in $r\phi$ and r
 - (use 10mm for visualization in plot)
- ϕ -offsets optimized to maximise the minimal $\Delta \phi$ between all modules
- a high momentum straight track can loose at most the hits from **one** module

- NN-cluster in pad row ranges (e.g. 15 rows) going inwards
- identify clean track stubs
- extend clean stubs forward & backward using Kalman fitter
 - add best matching Hit if delta(chi2) < 35.</p>
 - update track state !
 - search in next row
- repeat 3 times with increasing distance cut on seed clustering

example:

- ttbar event @ 500 GeV
- results in <u>clean tracks</u> and segments for curlers
- little leftover hits
- some very close by tracks lost (fixed in step2)

- re-cluster in leftover hits (NN clustering)
- based on pad row multiplicity force into
 - N=2,....9 clusters
- apply KalTest fit to throw out falsely merged hits (rare)
 - higher multiplicity: repeat iteratively in smaller row ranges until only three or two tracks left

 torced into tracks C Event Display (CED)

 three close-by tracks forced into three tracks

ILD Tracking Software and Performance

- repair split tracks:
 - identify incomplete track segments that:

don't start at the inner field cage and/or that don't end at the outer field cage or endplate

- merge segments that have consistent tracks states (based on delta chi2 after hits are added)
- problem mostly due to double hit resolution (merged hits)

example: WW @ 1TeV one lower pt track crossing four higher pt tracks in a dense jet

merge track segments (from curlers)

based on rough (O(10%)) criterion for R, delta(xc,yc), tan(lambda) disallow overlaps in z

examples:

- ttbar event @ 500 GeV
- only few segments are not merged
- most of these curler segments
- where lost in old patrec
- also works in higher multiplicities, e.q. @ 3 TeV:

• for the IDR (Interim Design Report) of ILD of we have studied the tracking performance for two different detector models:

large and small ILD model

- TPC radius reduced from 1.77 m to 1.43 m $\,$
- B-field increased from 3.5 T to 4 T
- inner tracking and calorimeter thicknesses kept constant
- changed aspect ratio

Momentum resolution

Momentum Resolution

Momentum Resolution Ratio

Impact parameter resolution

F.Gaede

LCTPC Meeting, DESY, Jan 14, 2020 20 / 27

Tracking efficiency

F.Gaede

ILD Tracking Software and Performance

LCTPC Meeting, DESY, Jan 14, 2020 21 / 27

Tracking efficiency

ILD Tracking Software and Performance

Tracking efficiency - 2D

- dE/dx is computed from deposited energy (Geant4) and the path length from the track fit
- a correction is applied to receive the overall resolution of the dE/dx as established from the LCTPC prototype - scaled to the number of TPC hits in ILD
- dE/dx shown for single particle events (e, μ, π, K, p) with logarithmic momentum and isotropic directions
 - also spurious tracks from secondaries (back scatter) visible

• TOF estimator computed from first 10 ECal layers assuming 100 ps resolution

ILD Tracking Software and Performance

Summary and Outlook

- ILD has a rather realistic description of the tracking system
- attempt to get the correct material estimates and wherever possible use parameterizations of the point resolutions and double hit resolutions as established form **test beams**
- the overall tracking performance for both resolutions and efficiencies matches the physics goals of ILD
- the smaller ILD detector model with a reduced TPC radius shows slightly worse performance

Potential future studies

- modify the parameters for point resolutions and double hit resolutions in the TPC digitizer and study the effect on the performance for resolution and efficiency
- could get estimate on the expected complete loss of close by high momentum tracks already from generator studies (if not separated enough along the full path length)

Pointers to ILD Tracking Software

- all code is in Github under : https://github.com/iLCSoft packages:
- MarlinTrk
 - generic tracking code: MarlinTrk interface
- MarlinTrkProcessors
 - TPC digitizer (and other tools)
- Clupatra
 - TPC pattern recognition
- KalTest
 - Kalman filter
- DDkalTest
 - measurement surfaces used for KalTest