Check ctag distribution anomaly Masakazu Kurata 1/15/2020 #### Check cause of this point - Analysis of Higgs branching ratio measurement precision - Estimation of precision of σBR(H→bb), σBR(H→cc), σBR(H→gg) #### Check points - 1. LCFIPlus ctag output - IDR: b:c:uds=1:1:3 training - b:c:uds=1:1:1 training goes to same output as DBD? - 2. ROC curve check with Higgs decays - $H \rightarrow cc v.s. H \rightarrow gg$ - $H \rightarrow cc v.s. H \rightarrow other$ - Compare among IDR1:1:3, IDR1:1:1, and DBD weight files - 3. σBr precision - Compare among IDR1:1:3, IDR1:1:1, and DBD weight files - check the order of $1 \rightarrow 3 \rightarrow 2$ #### 1. LCFIPlus output #### • nnh→nncc c-jet likeliness #### 3. σBR for each weight file • IDR-IDR, IDR-L, P(-0.8,+0.3), 1600fb⁻¹ | Weight/Process | | H→bb | Н→сс | H→gg | | |----------------|-----|-----------------------------------|-----------------|-----------------|--| | IDR 1:1:3 | (%) | 0.43 ± 0.01 | 3.88 ± 0.02 | 1.70 ± 0.02 | | | IDR 1:1:1 | (%) | $\textbf{0.42} \pm \textbf{0.01}$ | 3.94 ± 0.02 | 1.70 ± 0.02 | | | DBD | (%) | 0.43 ± 0.01 | 3.95 ± 0.02 | 1.66 ± 0.02 | | - Almost same performance - Same tendency of IDR1:1:1 and DBD - A bit worse in $H \rightarrow cc$, slightly better in $H \rightarrow gg$ - H→bb difference small ## 2. ROC curve with Higgs decays No big difference among 3 So, - Low ctag peak disappears when training with b:c:uds = 1:1:1 - Go to similar shape as DBD No big difference among each TMVA weight file - Almost same results of σBR precision - DBD and 1:1:1 training have same tendency - A bit worse in $H \rightarrow cc$, slightly better in $H \rightarrow gg$ - Looks no problem - OK? #### Redo for final results - TMVA weight file: train with b:c:uds = 1:1:1 - Recreate templates - Redo template fitting - Recreate IDR plots #### LCFIPlus check - LCFIPlus output between large and small - 1:1:1 training #### LCFIPlus check - LCFIPlus output between large and small - 1:1:3 training ### LCFIPlus v.s. perfect flavortag #### σBR for all the polarization status As mentioned, difference is small from 1:1:3 | Process | P(-0.8,+0.3) | P(+0.8,-0.3) | P(-0.8,-0.3) | P(+0.8,+0.3) | Combined | |--------------------------------------|-----------------|------------------|------------------|------------------|-----------------| | $H{\rightarrow}b\overline{b}$ (%) | 0.42 ± 0.01 | 1.03 ± 0.01 | 0.99 ± 0.01 | 1.89 ± 0.01 | 0.36 ± 0.01 | | $H \rightarrow c\overline{c} \ (\%)$ | 3.94 ± 0.02 | 10.99 ± 0.07 | 11.06 ± 0.08 | 21.93 ± 0.14 | 3.47 ± 0.02 | | $H{ ightarrow} gg~(\%)$ | 1.70 ± 0.01 | 4.95 ± 0.03 | 4.74 ± 0.03 | 9.05 ± 0.06 | 1.50 ± 0.01 | Table 12: Results of measurement precision of σBR . These are the large detector case. | Process | P(-0.8,+0.3) | P(+0.8,-0.3) | P(-0.8,-0.3) | P(+0.8,+0.3) | Combined | |--------------------------------------|-----------------|------------------|------------------|------------------|-----------------| | $H \rightarrow b\overline{b} \ (\%)$ | 0.43 ± 0.01 | 1.00 ± 0.01 | 0.98 ± 0.01 | 1.87 ± 0.01 | 0.36 ± 0.01 | | $H \rightarrow c\overline{c} \ (\%)$ | 3.78 ± 0.02 | 11.10 ± 0.08 | 10.65 ± 0.08 | 20.06 ± 0.14 | 3.34 ± 0.02 | | $H \rightarrow gg \ (\%)$ | 1.78 ± 0.01 | 4.72 ± 0.03 | 4.71 ± 0.03 | 8.47 ± 0.06 | 1.54 ± 0.01 | Table 13: Results of measurement precision of σBR . These are the small detector case. ## Combined only # 2D projection of 3D templates No anomaly peak in H→cc #### "Normalized" 2D projection #### c-likeliness between small & large - (-,+) distribution - Excess in small detector @high c-likeliness - Better precision for small Large Small # Some distributions at high c-likeliness events - (-,+) case - Choose events with c-likeliness>0.9 - nPFO: small difference small is (slightly) smaller number - Coming from beam background?? # Some distributions at high c-likeliness events - (-,+) case - Choose events with c-likeliness>0.9 - Overlaid particles: - Jets without overlaid particle: small detector has more - Momentum of overlaid particle: lower momentum can be detected in large detector #### c-likeliness without beambackground - Status - Remove overlaid particles using MCTruth - Pass through event selection Large Small