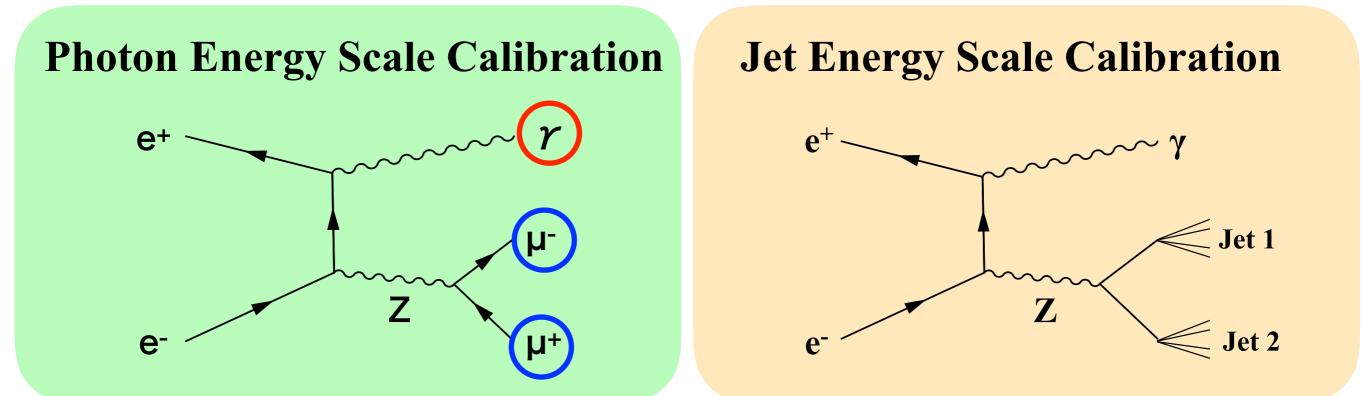
Jet energy calibration on toy MC

SOKENDAI Takahiro Mizuno

Introduction

Detector Benchmark Motivation

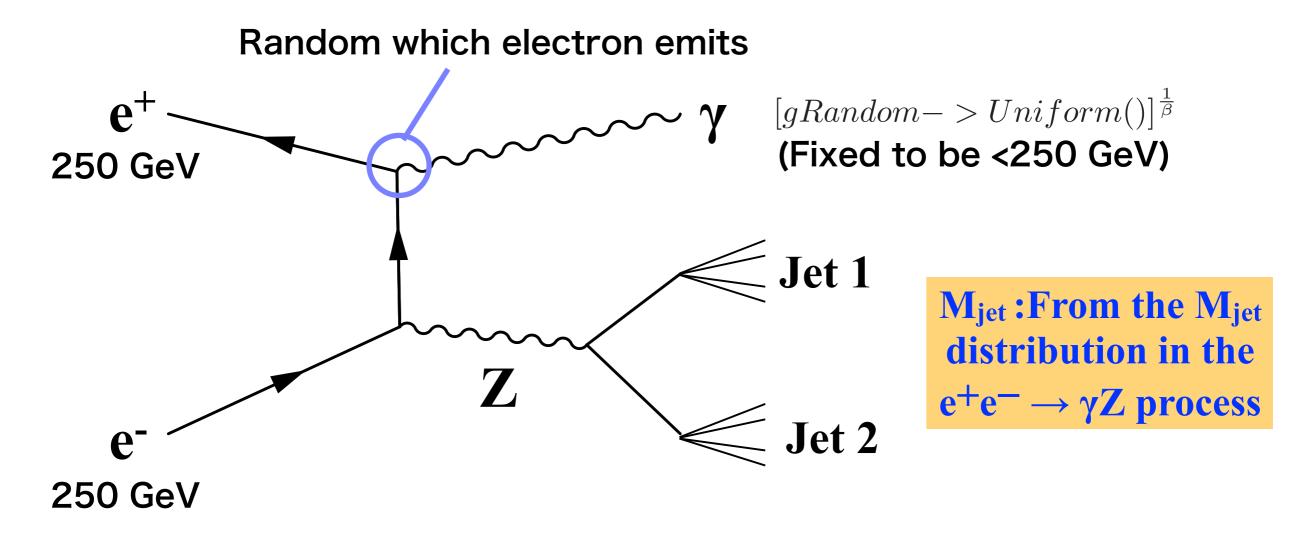
- In the previous study, it has been shown that photon energy can be calibrated using the $e^+e^- \rightarrow \gamma Z$ process.
- Using similar energy reconstruction methods as the photon energy reconstruction, the jet energies in the $e^+e^- \rightarrow \gamma Z$, $Z \rightarrow 2J$ ets can be reconstructed.
- If the jet energies can be correctly reconstructed, the $e^+e^- \rightarrow \gamma Z$ process is useful for the jet energy calibration.



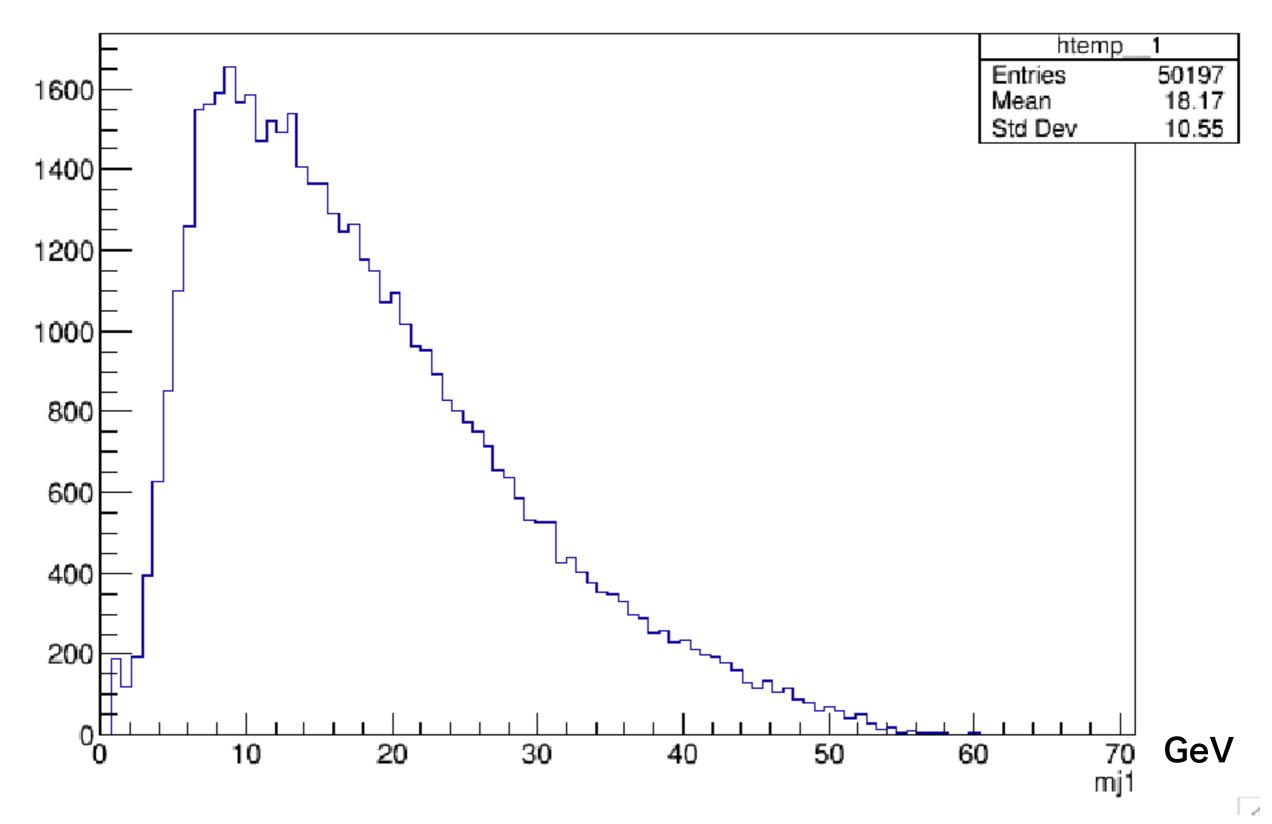
Jet Energy Scale Calibration

• Process: $e^+e^- \rightarrow \gamma Z$, $Z \rightarrow 2Jets$

As a first step of this calibration, Toy MC simulation to reconstruct the jet energy is performed.
 E_{CM}= 500 GeV, M_{jet} is quoted from the MCTrue jet mass distribution in e⁺e⁻ → γZ, Z → 2Jets process.



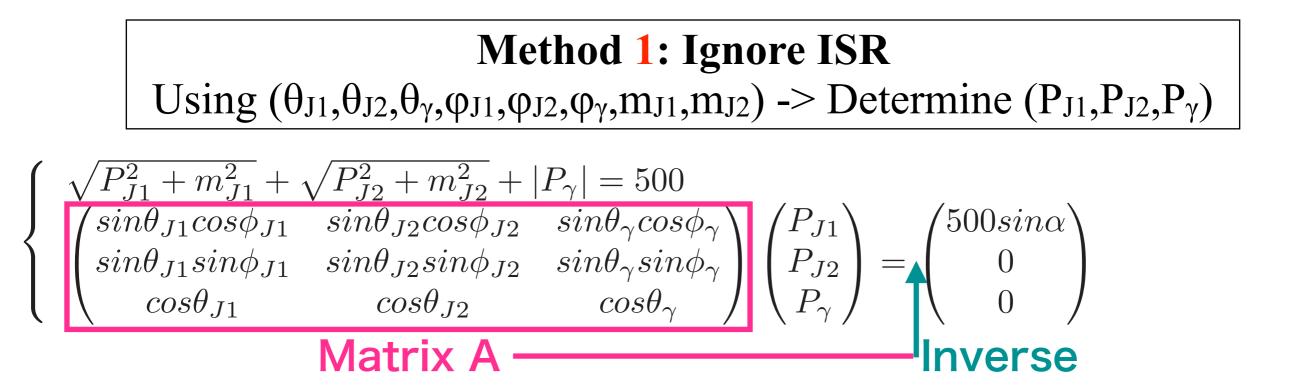
Jet Mass Input (Before smearing) MC particles for e+e- -> gamma Z events at Ecm=500 GeV, by the physsim



4

Based on 4-momentum conservation

• Several reconstruction methods (Method 1, 2', 2, and 3) are considered.



 ϕ : azimuthal angle

Based on 4-momentum conservation

 $\begin{cases} \sqrt{P_{J1}^{2} + m_{J1}^{2}} + \sqrt{P_{J2}^{2} + m_{J2}^{2}} + |P_{\gamma}| + |P_{ISR}| = 500 \\ P_{J1}sin\theta_{J1}cos\phi_{J1} + P_{J2}sin\theta_{J2}cos\phi_{J2} + P_{\gamma}sin\theta_{\gamma}cos\phi_{\gamma} + |P_{ISR}|sin\alpha = 500sin\alpha \\ P_{J1}sin\theta_{J1}sin\phi_{J1} + P_{J2}sin\theta_{J2}sin\phi_{J2} + P_{\gamma}sin\theta_{\gamma}sin\phi_{\gamma} = 0 \\ P_{J1}cos\theta_{J1} + P_{J2}cos\theta_{J2} + P_{\gamma}cos\theta_{\gamma} \pm |P_{ISR}|cos\alpha = 0 \\ \text{Beam Crossing Angle} = 2\alpha : \alpha = 7.0 \text{ mrad} \end{cases}$

input.

Measured P_{γ} is smeared as

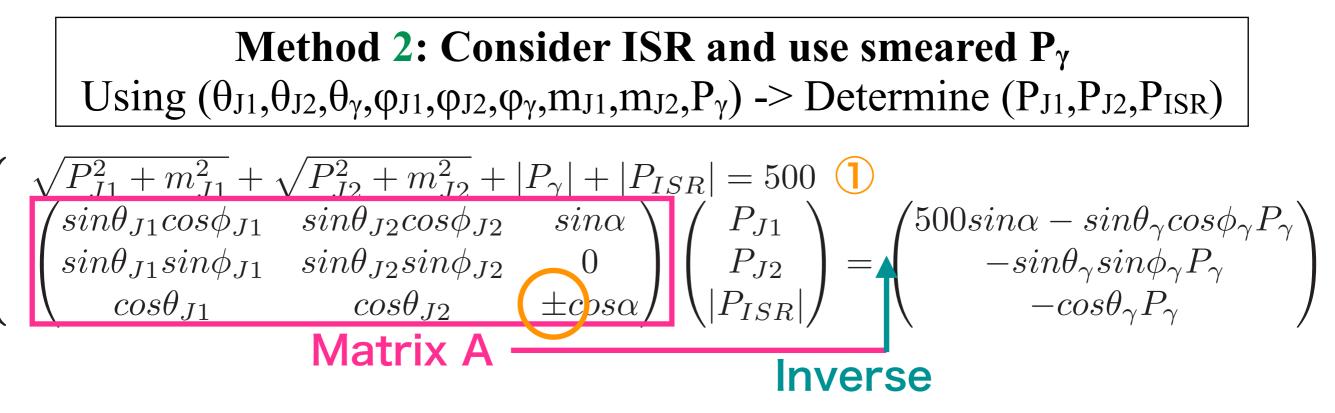
 $P_{\gamma} = P_{\gamma MC} \times 0.15 \sqrt{P_{\gamma MC}} \times gRandom - > Gaus(0., 1.)$

corresponding to the photon energy resolution

 $\frac{\sigma_{E\gamma}}{E_{\gamma}} = \frac{0.15}{\sqrt{E_{\gamma}}}$

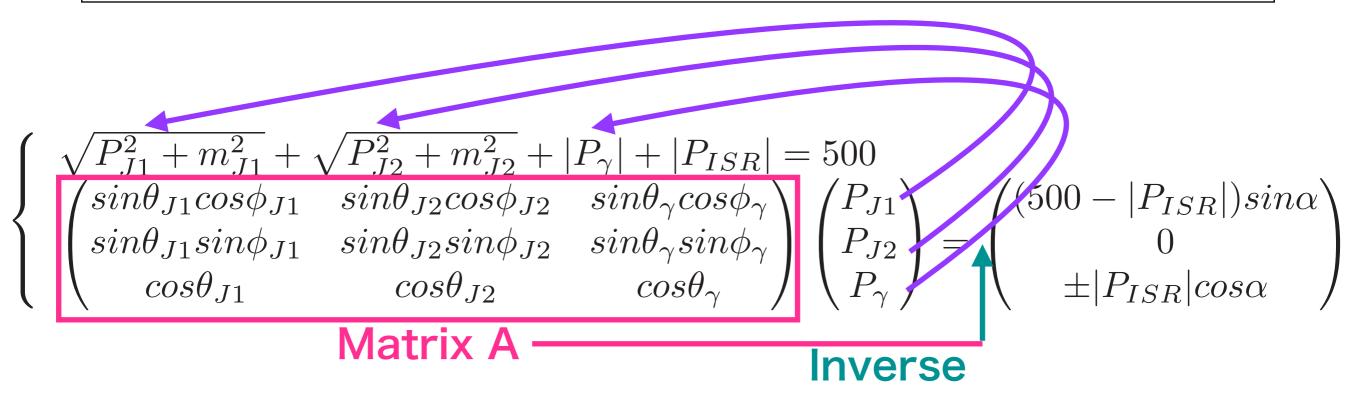
Method 2': Ignore ISR and use smeared P_{γ} Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine (P_{J1}, P_{J2})

 $\left\{ \begin{array}{ll} \left(\begin{array}{cc} \sin\theta_{J1}\cos\phi_{J1} & \sin\theta_{J2}\cos\phi_{J2} \\ \sin\theta_{J1}\sin\phi_{J1} & \sin\theta_{J2}\sin\phi_{J2} \end{array} \right) \begin{pmatrix} P_{J1} \\ P_{J2} \end{pmatrix} = \begin{pmatrix} 500\sin\alpha - \sin\theta_{\gamma}\cos\phi_{\gamma}P_{\gamma} \\ -\sin\theta_{\gamma}\sin\phi_{\gamma}P_{\gamma} \end{pmatrix} \right.$



2 solutions for each sign of P_{ISR} -> choose the best answer which satisfies 1 better

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

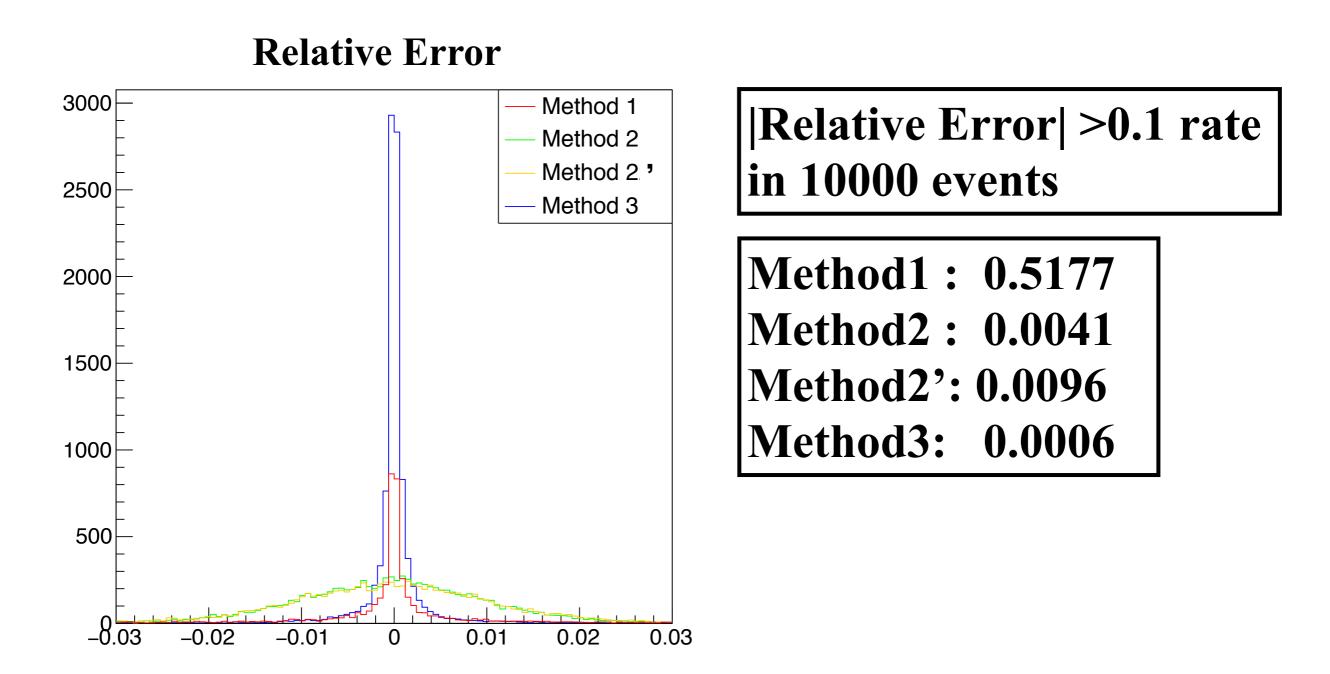


Inserting P_{J1} , P_{J2} , P_{γ} into the first equation

- -> 8 Possible Solutions!
- 4: Quartic Equation of |P_{ISR}| X 2: sign of ISR
 - Choose real and positive solutions
 - Solved P_{γ} close to the measured (smeared) P_{γ}

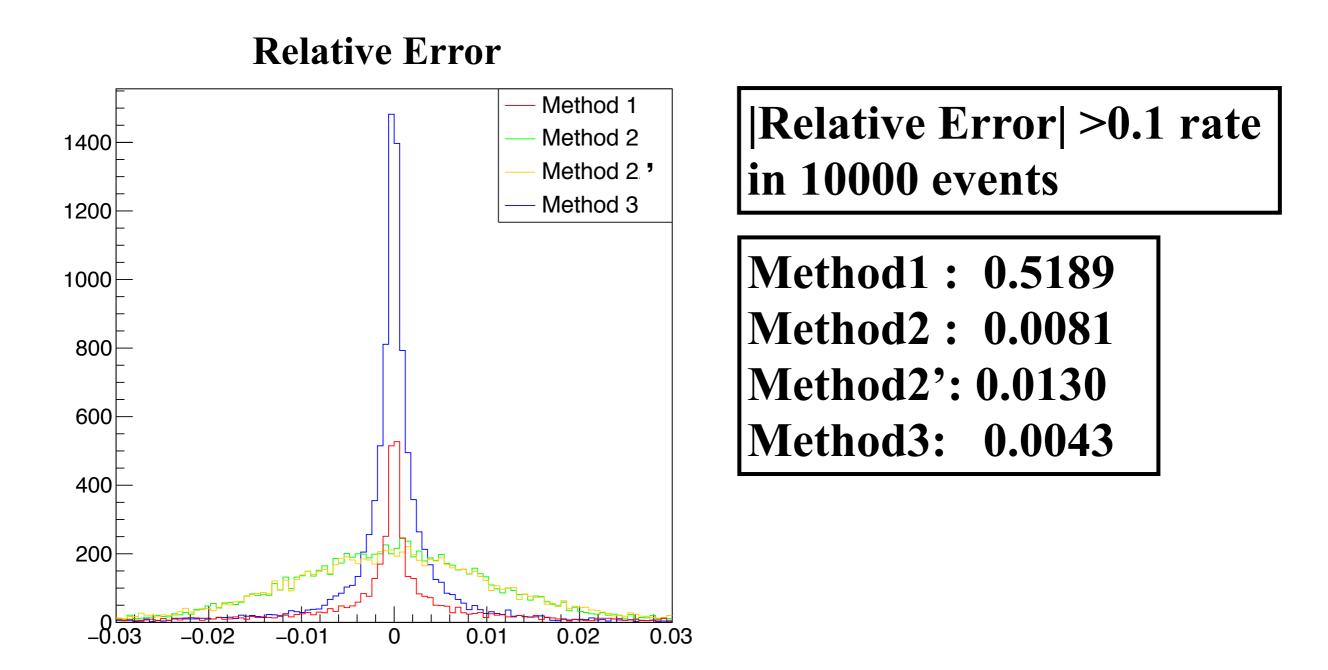
Method Comparison Result[®]

In every method, Jet Mass Inputs: Smeared 3% in Sigma Jet Angles: No Smearing



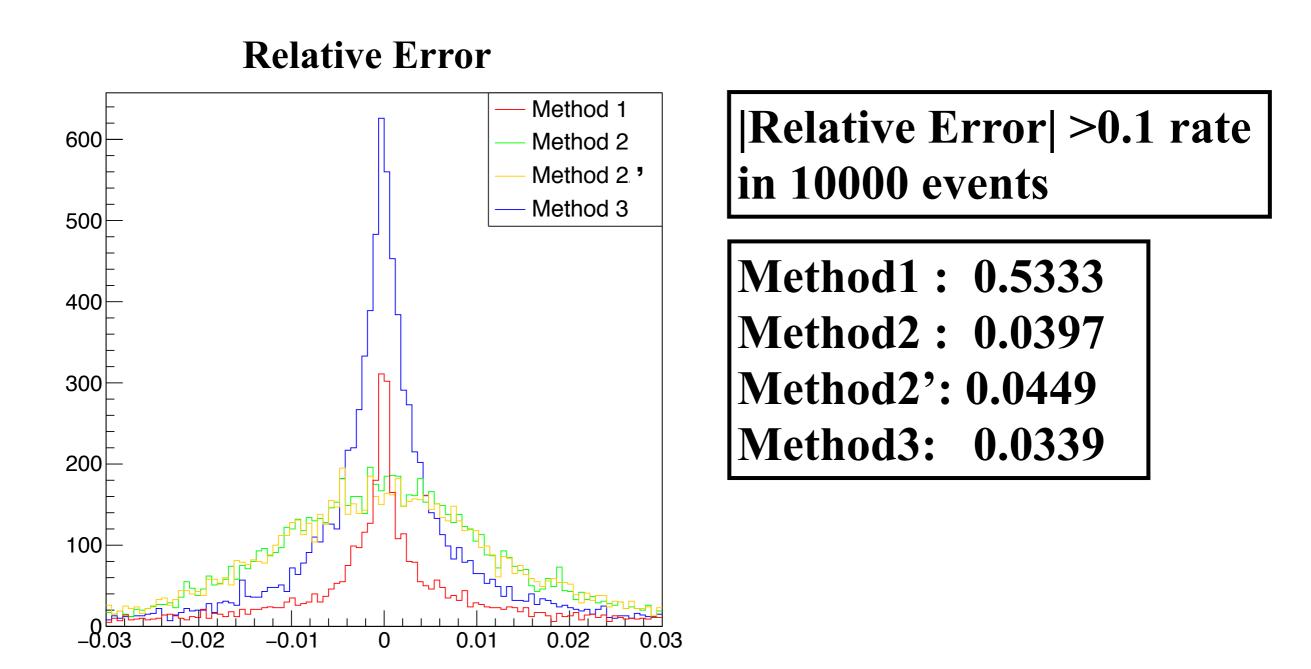
Method Comparison Result¹⁰

In every method, Jet Mass Inputs: Smeared 10% in Sigma Jet Angles: No Smearing



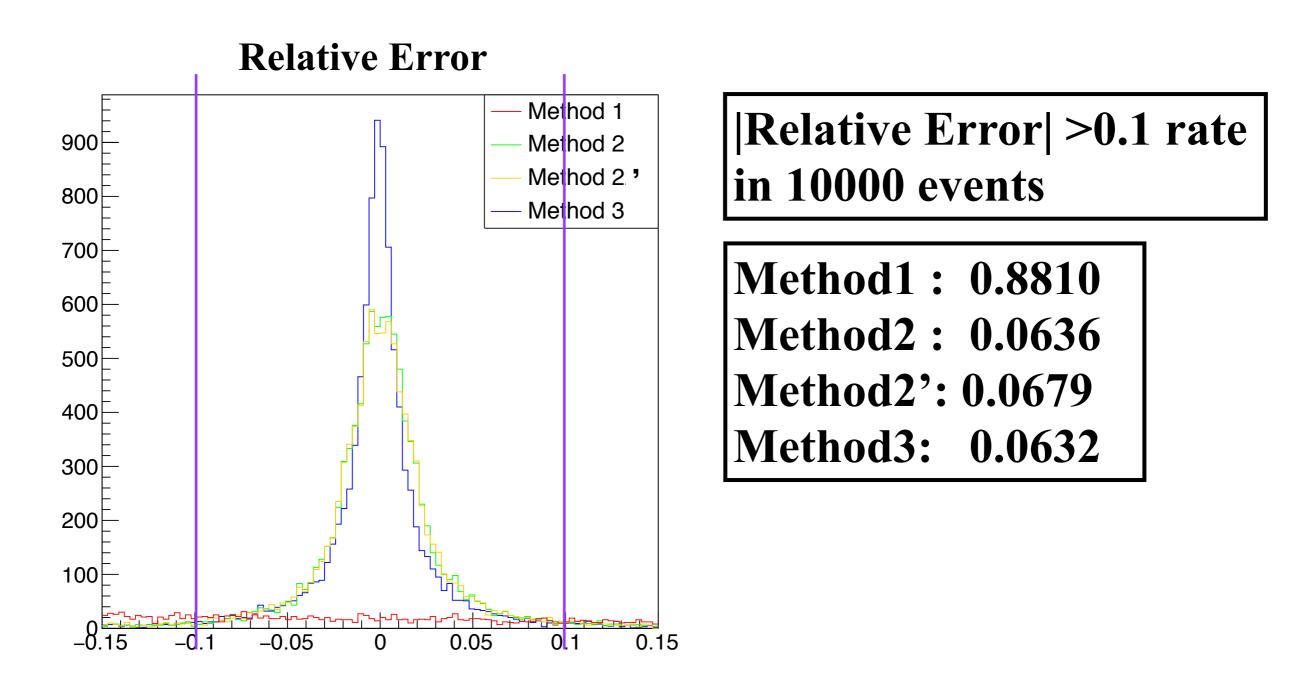
Method Comparison Result

In every method, Jet Mass Inputs: Smeared 30% in Sigma Jet Angles: No Smearing



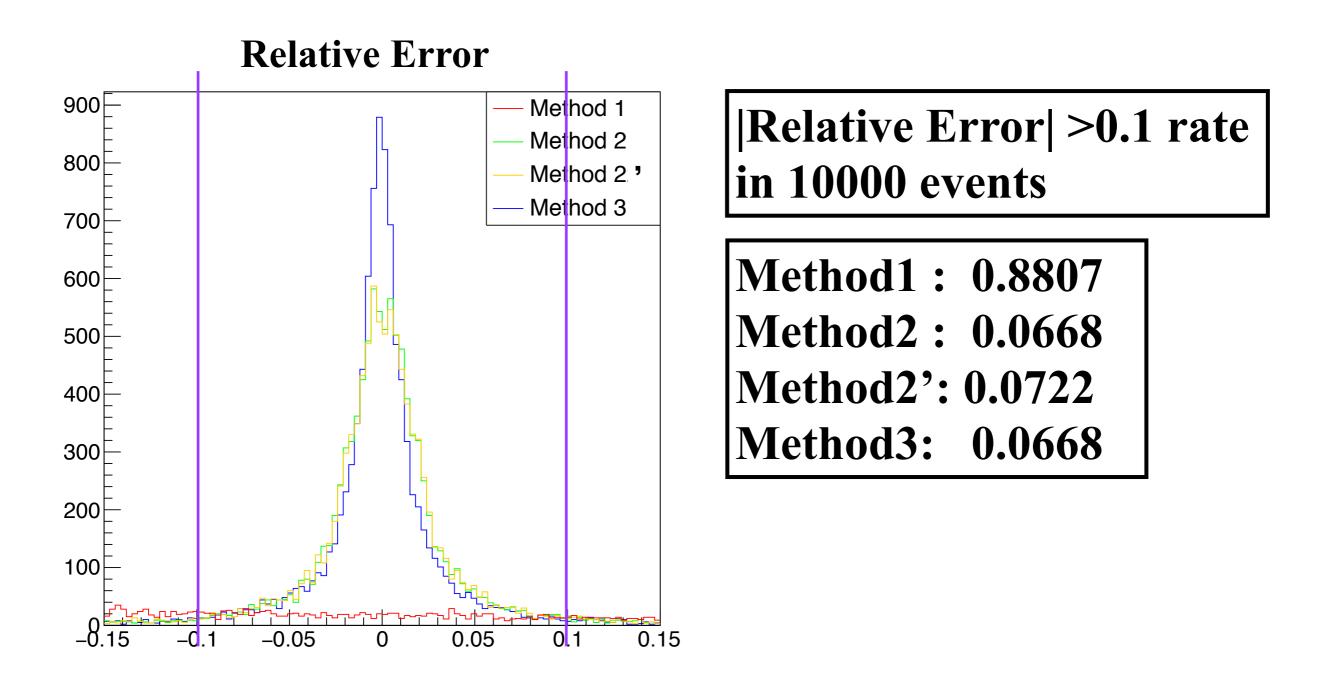
Method Comparison Result¹²

In every method, Jet Mass Inputs: Smeared 3% in Sigma Jet Angles: Smeared 0.3 degree



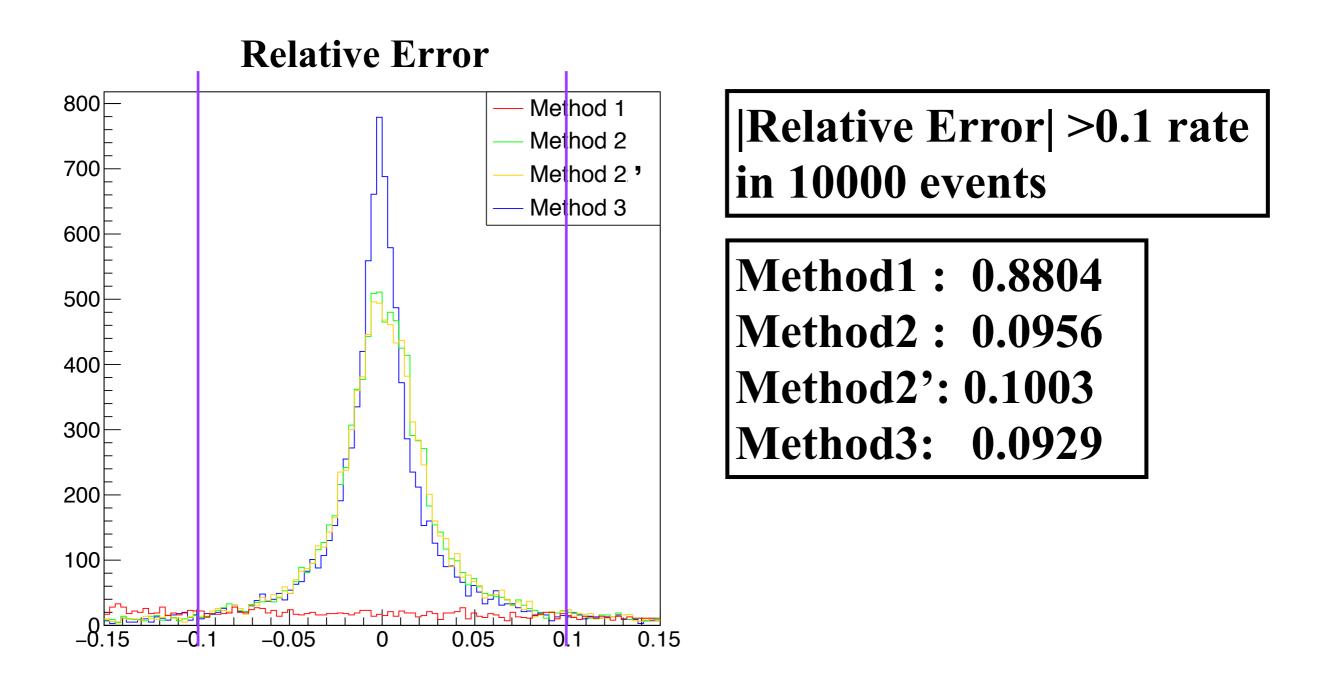
Method Comparison Result¹³

In every method, Jet Mass Inputs: Smeared 10% in Sigma Jet Angles: Smeared 0.3 degree



Method Comparison Result¹⁴

In every method, Jet Mass Inputs: Smeared 30% in Sigma Jet Angles: Smeared 0.3 degree



Method3 is the best for the jet energy reconstruction.

As Method3 has 8 solutions,

I investigated why we can choose the best answer almost every time.

Method3 is the best for the jet energy reconstruction.

As Method3 has 8 solutions,

I investigated why we can choose the best answer almost every time.

In Method3, the criteria to choose the best answer are following:

- Choose real and positive solutions
- Solved P_{γ} close to the measured (smeared) P_{γ}

Method3 is the best for the jet energy reconstruction.

As Method3 has 8 solutions,

I investigated why we can choose the best answer almost every time.

In Method3, the criteria to choose the best answer are following:

- Choose real and positive solutions
- Solved P_{γ} close to the measured (smeared) P_{γ}

I found that the second criteria has great influence.

The difference (solved P_{γ}) - (measured P_{γ}) is shown as DIFF in next page.

Method3 is the best for the jet energy reconstruction.

As Method3 has 8 solutions,

I investigated why we can choose the best answer almost every time.

In Method3, the criteria to choose the best answer are following:

- Choose real and positive solutions
- Solved P_{γ} close to the measured (smeared) P_{γ}

I found that the second criteria has great influence.

The difference (solved P_{γ}) - (measured P_{γ}) is shown as DIFF in next page.

I31=70.6428	
I33=406.849	
solv= 0.0118054 31.0622	
solv= 0.0653349 6.88158	
Best PISR= 0.0118054	
ROOT[0]= 0.0118054 ROOT[1]= 0.0653349 ROOT[2]= 6.88158 ROOT[3]= 31.0622	
DIFF[0]= 1.28653 DIFF[1]= 30.0707 DIFF[2]= 2799.81 DIFF[3]= 12649.2	

I31=69.0833	
I33=-234.084	
solv= 0.491862 2.60819	
solv= 0.000413702 31.4852	
Best PISR= 0.000413702	
ROOT[0]= 0.000413702 ROOT[1]= 0.491862 ROOT[2]= 2.60819 ROOT[3]= 31.4852	
DIFF[0]= 2.05969 DIFF[1]= 112.934 DIFF[2]= 607.296 DIFF[3]= 7387.17	

I31=87.4963	
I33=-63.6165	
solv= 19.3529	
solv= 0.0387745 1.02363 106.951	
Best PISR= 1.02363	
ROOT[0]= 1.02363 ROOT[1]= 0.0387745 ROOT[2]= 19.3529 ROOT[3]= 106.951	
DIFF[0]= 0.125377 DIFF[1]= 63.1295 DIFF[2]= 1284.9 DIFF[3]= 6803.59	

After we get solutions of equation $|P_{ISR}|$, P_{γ} is calculated by using the inversed matrix A⁻¹, which has huge components (shown as I₃₁ and I₃₃ in the previous page).

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

$$\sqrt{P_{J1}^{2} + m_{J1}^{2}} + \sqrt{P_{J2}^{2} + m_{J2}^{2}} + |P_{\gamma}| + |P_{ISR}| = 500$$

$$\begin{pmatrix} \sin\theta_{J1}\cos\phi_{J1} & \sin\theta_{J2}\cos\phi_{J2} & \sin\theta_{\gamma}\cos\phi_{\gamma} \\ \sin\theta_{J1}\sin\phi_{J1} & \sin\theta_{J2}\sin\phi_{J2} & \sin\theta_{\gamma}\sin\phi_{\gamma} \\ \cos\theta_{J1} & \cos\theta_{J2} & \cos\theta_{\gamma} \end{pmatrix} \begin{pmatrix} P_{J1} \\ P_{J2} \\ P_{\gamma} \end{pmatrix} = \begin{pmatrix} (500 - |P_{ISR}|)\sin\alpha \\ 0 \\ \pm |P_{ISR}|\cos\alpha \end{pmatrix}$$

$$\frac{1}{2} + \frac{1}{2} + \frac{1$$

If |P_{ISR}| is shifted even slightly, the "DIFF" has large value. That's why we can choose the best answer almost every time.

Conclusion and future work

Method3 is the best for the jet energy reconstruction in the Toy MC study.

I will move on to the realistic simulation.simulation using 2f_z_h samples.