Possible Luxe studies with Test Beam

Oleksandr Borysov

FCAL meeting February 05, 2019

Outline

- Introduction
- Possible LUXE study with FCAL TB:
 - Cherenkov detector;
 - Inclined tracks;
 - Photons.

Chrencov Detector Test as Presented by Ruth Jacobs at 43-th HW meeting (11.12.19)

Proposed TB setup

- when LumiCal is measuring photons, could measure electrons
- place prototype behind Alpide telescope and synchronize
 - → high-resolution spatial information from telescope, study detector response as function of electron position and angle
- interesting electron energy range: anything above 10MeV (gas threshold) works
- prototype: two channels of 8.5x8.5 mm², total acceptance: 17x8.5 mm²
 - \rightarrow expected electron energy range covered: ΔE ~ 1.1 GeV

Test beam line T21

- The rate when taking data with ALPIDE telescope in tb2019 was about 800 Hz for 5 GeV;
- ~20 minutes for 1M events;
- It was probably limited by the beam rate;
- For lower energies (3GeV), which are also good for Cherenkov test, the rate can be higher;
- ALPIDE designed for 200kHz p-p collisions at LHC;
- Few hours would be enough to collect substantial data for Cherenkov prototype when running with just the telescope;
- Simple setup with just two subsystems.

Rates	Target 1	Target 2
Energy	3mm Cu	1mm Cu
1 GeV	~3 kHz	~1 kHz
2 GeV	~5 kHz	~1.5 kHz
3 GeV	~4.5 kHz	~1.2 kHz
5 GeV	~15Hz (6GeV in DESY II) - 600 Hz (7GeV in DESY II)	~3Hz (6GeV in DESY II) - 200 Hz (7GeV in DESY II)
6 GeV	~3 Hz (7GeV in DESY II)	~1 Hz (7GeV in DESY II)

The rates vs momentum

Inclined Tracks in LumiCal

- Test position reconstruction with inclined tracks ?
- Rotate LumiCal around X axis;
- Might be interesting both for LUXE (tracks after the magnet) and for ILD.

LUXE Setup for Photon Laser collisions

Photon-Photon collisions at LUXE

$$\gamma + n\omega \to e^+e^-$$

One photon pair production (OPPP) at ultra high intensity - non-perturbative physics

European XFEL electron beam:

- Energy 17.5 GeV (also possible 10 GeV and 14 GeV);
- Normalized emittance 1.4 mm mrad;
- Repetition rate 10 Hz.

Photons are produced by collisions of XFEL electron beam with tungsten target 6

One Photon Pair Production in MC

- The rate is up to ~100 e-e+ pairs per one bunchlaser interaction;
- The energy spectra peak at 7 GeV;
- Spectrometer:
 - 1.4T magnet of 1m length;
 - Pixel detector (100 x 100 $\mu m^2 pixel)$ located 1m away from the magnet;
 - Detection efficiency ~99%.
- Background and energy resolution to be studied !

Bremsstrahlung Production in Simulation

Geant4 simulation with different physics lists

- Gaussian beam, focused on IP;
- Tungsten target 1%X0 (35um) thickness
- 5 m from IP;
- 6.25 M electrons (BX/1000);
- Production cut: 1 μm.
- Angular distribution is the widest for option_4 physics list and the narrowest for option_0.
- Total number of photons in forward region is identical for all physics lists.

3000 3500 4000 4500 5000 5500 6000 6500 7000 Number of photons per BX $(/10^3)$

Number of photons in wide rage of θ

Angular distribution of photons

Different physics lists

Copper targets 1 mm and 2.5 mm. Photons

Setup

- Target: tungsten 0.1 mm (3%X0) or Copper
- Measure bremsstruhlung photon angular distribution;
- Measure bremsstruhlung spectrum;
- Telescope sensor (size 30 x 15 mm²) covers electron range ~2 GeV;

Number of secondaries per event

Material	Thickness (mm)	Gammas	electrons	positrons	rms proj angle (mrad)
W	0.1	0.3275	0.9524	0.001826	0.4152
W	0.2	0.6722	1.986	0.007265	0.6171
W	0.3	1.029	3.081	0.01666	0.7801
Cu	1	0.9346	11.54	0.01125	0.6802
Cu	1.5	1.403	17.82	0.02469	0.864
Cu	2.5	2.458	31.34	0.06611	1.171

Summary

- Consider the possibility to test the Cherenkov prototype separately when LumiCal will be disassembled in the end or in the very beginning.
- Test position reconstruction for inclined tracks?
- Bremsstrahlung photons angular distribution and spectrum measurements:
 - Detailed study in simulation to check the possibility and optimize the setup in the soonest time.

Beam position after the magnet

 $R[Ee_] = \sqrt{Ee^{2} - me^{2}} / (clight \star B)$ $\frac{\sqrt{Ee^{2} - me^{2}}}{B clight}$ $S[Ee_] = R[Ee] - \sqrt{R[Ee]^{2} - zm^{2}}$ $\frac{\sqrt{Ee^{2} - me^{2}}}{B clight} - \sqrt{\frac{Ee^{2} - me^{2}}{B^{2} clight^{2}}} - zm^{2}$ $sint[Ee_] = zm / R[Ee]$ B clight zm

$$\sqrt{\text{Ee}^2 - \text{me}^2}$$

tgt[*Ee_*] = sint[Ee] /
$$\sqrt{1 - sint[Ee] ^ 2}$$

B clight zm

$$\sqrt{\text{Ee}^2 - \text{me}^2} \sqrt{1 - \frac{\text{B}^2 \text{clight}^2 \text{zm}^2}{\text{Ee}^2 - \text{me}^2}}$$

xd [Ee] = S[Ee] + zd + tgt[Ee]

 $\frac{\sqrt{\text{Ee}^2 - \text{me}^2}}{\text{Bclight}} = \sqrt{\frac{\text{Ee}^2 - \text{me}^2}{\text{B}^2 \text{clight}^2}} = \text{zm}^2 + \frac{\text{Bclight} \text{zd} \text{zm}}{\sqrt{\text{Ee}^2 - \text{me}^2}} \sqrt{1 - \frac{\text{B}^2 \text{clight}^2 \text{zm}^2}{\text{Ee}^2 - \text{me}^2}}$

$$E_1 - E_2 = E_1 \frac{\Delta x}{x_1 + \Delta x}$$
 5 * 3/(4.5+3) = 2 (GeV)

 X_1 is defined by the telescope plane geometry, for ALPIDE it is 4.5 cm.

