Status on e⁺e⁻ -> γZ process Jet Energy Calibration

Takahiro Mizuno

Reconstruction Method

Based on 4-momentum conservation

• Several reconstruction methods (Method 1, 2', 2, and 3) are considered.

 ϕ : azimuthal angle

Reconstruction Method

Method 2': Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine (P_{J1}, P_{J2})

 $\left\{ \begin{array}{ll} \left(\begin{array}{cc} sin\theta_{J1}cos\phi_{J1} & sin\theta_{J2}cos\phi_{J2} \\ sin\theta_{J1}sin\phi_{J1} & sin\theta_{J2}sin\phi_{J2} \end{array} \right) \begin{pmatrix} P_{J1} \\ P_{J2} \end{pmatrix} = \begin{pmatrix} 500sin\alpha - sin\theta_{\gamma}cos\phi_{\gamma}P_{\gamma} \\ -sin\theta_{\gamma}sin\phi_{\gamma}P_{\gamma} \end{pmatrix} \right.$

Method 2: Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{ISR})$

2 solutions for each sign of P_{ISR} -> choose the best answer which satisfies **1** better

Reconstruction Method

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

The first equation (1) becomes a quartic equation of $|P_{ISR}|$.

- -> 8 Possible Solutions!
- (2 direction options of ISR × 4 solutions for each quartic equation)

Choose the solution with (i) real and positive value (ii) solved P_{γ} closest to the measured P_{γ}

2f_z_h sample simulation

eLpR samples Large ILD model

Full simulation (ILCSOFT version v02-00-02)

- Event generation by Whizard 1.95
 with beamstrahlung and additional ISR photon effects
- Realistic event reconstruction from detector signals
- Process: $e^+e^- \rightarrow \gamma Z$, $Z \rightarrow 2Jets$
- $E_{CM} = 500 \text{ GeV}$
- Polarization: e⁺: Right e⁻: Left

1. Comparison of physical quantities of jets between MCTruth and PFO

1.1. absolute theta difference of each jet and the absolute phi difference of each jet

1.2. absolute mass difference of each jet

1.3. difference of the jet energy sum between PFO and MCTruth

1.1 Theta & Phi Comparison

1.2. Jet mass deviation dependence on jet mass

Mass resolution is found to be very bad (sometimes ~O(1)).

When the jet is lighter, the resolution is worse.

1.2. Jet mass deviation dependence on jet mass

Mass resolution is found to be very bad (sometimes ~O(1)).

When the jet is lighter, the resolution is worse.

1.3. difference of the jet energy sum between PFO and MCTruth

(j1EAnl+j2EAnl)-(j1EMC+j2EMC)

1.3. difference of the jet energy sum between PFO and MCTruth

1.3. difference of the jet energy sum between PFO and MCTruth

2. Full Simulation Result

2.1. Method comparison result

2.2. Angle dependence

While Method 2 and 2' become useless.

j1EAnl+j2EAnl+photonEAnl-j1EMC-j2EMC {abs(photonthetaAnl-photonthetaMC)>0.01}

2.2. Method 3 angle dependence

We saw some theta dependence previously.

In order to see angle dependence, the number of events are still low. (4 cut options: j1theta, j1phi, j2theta, j2phi) -> First, events with both j1theta and j2theta are <0.8 are checked.

2.2. Angle dependence

Wrong photon case

