Status on e⁺e⁻ -> γZ process Jet Energy Calibration

Takahiro Mizuno

Introduction

- In the photon energy calibration, photon energy can be reconstructed using measured direction of γ and μ -, μ + or additionally muon mass information in the e⁺e⁻ $\rightarrow \gamma Z$ process.
- Using similar energy reconstruction methods, jet energies in the e⁺e⁻ $\rightarrow \gamma Z$, $Z \rightarrow 2J$ ets can be reconstructed.
- If the jet energies can be correctly reconstructed, the $e^+e^- \rightarrow \gamma Z$ process is useful for the jet energy calibration.

Progress last time

As a first step of this calibration, Toy MC simulation to reconstruct the jet energy is performed.

M_{jet} is quoted from the MCTrue jet mass distribution.

Full simulation

(ILCSOFT version v02-00-02)

Random which electron emits e⁺ 250 GeV Jet1 Z/γ Jet2 e⁻ ISR

250 GeV

- Process: $2f_z_h$ (for IDR-L)
- $E_{CM} = 500 \text{ GeV}$
- Polarization: e⁺: Right e⁻: Left

Full simulation

(ILCSOFT version v02-00-02)

Event Selection

Signature of the events: 1 energetic photon + 2 jets

In order to choose the signal photon,

- 1. choose neutral particles with particle ID = 22 (Pandora PFA ID)
- 2. energy > 50 GeV
- 3. choose the particle closest to 242 GeV

If another photon is inside the cone (with the angle $\cos\theta > 0.998$ from the signal photon), it is merged with the signal photon.

Jet Clustering

- All PFOs other than the selected photon are clustered into 2 jets with Durham algorithm (done by LCFIPlus)
- The higher energy jet is defined as "jet 1" and lower one as "jet 2"
- For comparison with MCtruth, all final state particles from 2 quarks are clustered into 2 jets

Jet Energy Reconstruction Method

Basic ideas: apply momentum conservation Inputs: measured jet directions and mass and photon directions

Method 1: Use 3-momentum conservation and ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma})$

Method 2': Use transverse momentum conservation and ignore ISR /Use measured P_{γ} as input Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, \mathbf{P}_{\gamma})$ -> Determine (P_{J1}, P_{J2})

Method 2: Use 4-momentum conservation and consider ISR /Use measured P_{γ} as input Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{ISR})$

Method 3: Use 4-momentum conservation and consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$ 1. Comparison between reconstructed and MCTruth information for the jets

1.1. θ^{J}_{Rec} - θ^{J}_{MC} , φ^{J}_{Rec} - φ^{J}_{MC} absolute θ difference of each jet absolute φ difference of each jet

1.2. M^{J}_{Rec} - M^{J}_{MC} absolute mass difference of each jet

1.3. E^{JSum}_{Reco} - E^{JSum}_{MC} absolute difference of the jet energy sum

1.1. $\theta \& \phi$ difference

1.2. Jet mass difference

 Reconstructed jet mass sometimes differs from the truth largely.
 -> Its jet mass dependence is checked.

1.2. Jet mass difference dependence on jet mass

MJ1_{Rec}-MJ1_{MC}

Absolute Difference of j1 mass

$M^{J2}Rec-M^{J2}MC$

Absolute Difference of j2 mass

Mass resolution is sometimes very bad (> O(1)).

When the jet is lighter, the resolution is worse.

10

1.3. Difference of the jet energy sum

1.3. Difference of the jet energy sum

Photon angles

1.3. Difference of the jet energy sum

Cut "|θγPFO-θγMC| <0.01" is appropriate.

"|θγPFO-θγMC| <0.01" events: 262705 (59%)</p>
"|θγPFO-θγMC| >0.01" events: 179205 (41%)

For this moment, this MCcut will be applied so as to separate events with correct and wrong photons and study jet energy resolution 2. Jet Energy Reconstruction Result

2.1. Method comparison result

2.2. Method 3 theta and energy dependence

2.1. Method Comparison

Jet 1 $|\theta\gamma_{PFO}-\theta\gamma_{MC}| < 0.01$ events 15000 PFO Method 1 Method 2 Method 2' Method 3 10000 5000 0 0.1 0.2 -0.2-0.1 $E_{JRec} - E_{JTrue}$ E_{JTrue}

- Performance of each method close to the ToyMC result. Method 3 is the best.
- Bias in Method 2 and Method 2': due to the bias in reconstructed photon energy
- Method 1 is useless.
- Method 2/2'/3 are significantly better than the PFO.

2.1. Method Comparison

Jet 2 $|\theta\gamma_{PFO}-\theta\gamma_{MC}| < 0.01$ events **PFO** 6000 Method 1 Method 2 Method 2' Method 3 4000 2000 -0.2 -0.10 0.1 0.2 $E_{JRec} - E_{JTrue}$ E_{JTrue}

All methods results are worse than the jet 1 results and close to the PFO.

Still Method 3 is the best.

2.2. Method 3 Jet 1 energy resolution θ dependence

150

100

50

200

150

100

50

600

400

200

-0.2

-0.2

0.017

-0.1

0.020

-0.1

-0.1

0.1

Energy Resolution of Jet

0.2

0 -0.2

-0.1

0.1 Energy Resolution of Jet

 $E_{JRec} - E_{JTrue}$ E_{JTrue}

2.2. Method 3 Jet 1 energy resolution Energy dependence

We can see clear jet energy dependence.

For the lower energy jets, JER is worse.

Summary

In order to exclude the wrong photon choice events, we need to develop the realistic cut and compare it with the " $|\theta\gamma PFO-\theta\gamma MC| < 0.01$ " cut which I am using now.

The cause of the difference between ToyMC and Full simulation should be studied more.

In the end, we need to include background.

Backup

Reconstruction Method

Based on 4-momentum conservation

• Several reconstruction methods (Method 1, 2', 2, and 3) are considered.

 ϕ : azimuthal angle

Reconstruction Method

Method 2': Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine (P_{J1}, P_{J2})

 $\left\{ \begin{array}{ll} \left(\begin{array}{cc} sin\theta_{J1}cos\phi_{J1} & sin\theta_{J2}cos\phi_{J2} \\ sin\theta_{J1}sin\phi_{J1} & sin\theta_{J2}sin\phi_{J2} \end{array} \right) \begin{pmatrix} P_{J1} \\ P_{J2} \end{pmatrix} = \begin{pmatrix} 500sin\alpha - sin\theta_{\gamma}cos\phi_{\gamma}P_{\gamma} \\ -sin\theta_{\gamma}sin\phi_{\gamma}P_{\gamma} \end{pmatrix} \right.$

Method 2: Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{ISR})$

2 solutions for each sign of P_{ISR} -> choose the best answer which satisfies **1** better

Reconstruction Method

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

The first equation (1) becomes a quartic equation of $|P_{ISR}|$.

- -> 8 Possible Solutions!
- (2 direction options of ISR × 4 solutions for each quartic equation)

Choose the solution with (i) real and positive value (ii) solved P_{γ} closest to the measured P_{γ}