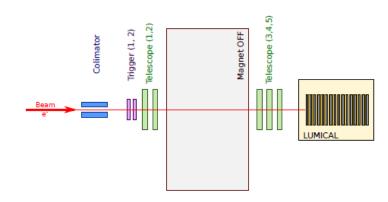


Starting simulation for Fcal testbeam 2020

A. T. Neagu

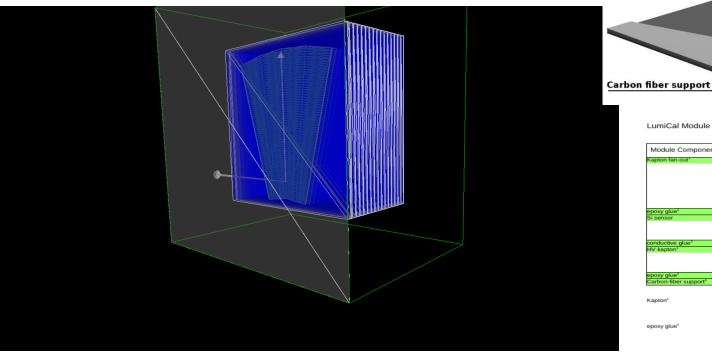
2020 TESTBEAM SETUP & FLAME DATA


Szymon Bugiel

TESTBEAM SETUP-REGULAR CONFIGURATION

01.04.2020

2020 Flame TestBear


Szymon Bugiel

- Beam spot after the colimator $\sim 5\,mm\,x\,5mm$
- Two scintilator triggers operating in coincidence mode
- 5 telescope planes 2 before and 3 after the magnet
- Magnet switched OFF
- · LumiCal placed on movable table

2020 Flame TestBeam | Szymon Bugiel

2020 Fcal TB geometry and materials in Geant4 **Lumical sensors**

LumiCal Module components

Kapton-copper fanout

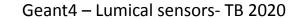
LumiCal Silicon sensor

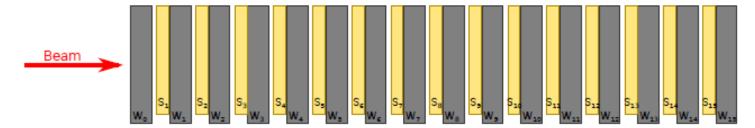
High voltage kapton

Module Component		Thickness (µm)			
	part components		Min	Max	Average
Kapton fan-out [*]			130	160	150
	polyimide	12.7			
	adhesive	25.4			l
	copper (partly etched)	35.56			l
	polyîmide	25.4			l
	copper (not in sensor area)	17.78			l
	adhesive	12.7			l
	polyimide	12.7			l
epoxy glue ²			10	15	10
Si sensor			360	360	360
	Al	20			
	Si	320±15			l
	Al	20			l
conductive glue ³			20	50	
HV kapton ¹			90	90	90
	ENIG	0.1			
I	copper	24.9	l	I	l
	polyimide	75			l
epoxy glue ²			20	20	20
Carbon-fiber support			110	120	115
	polymnac		20		

There was another version, where kapton thickness was 20 um less It was used for modules 20 and 21.

Araldite

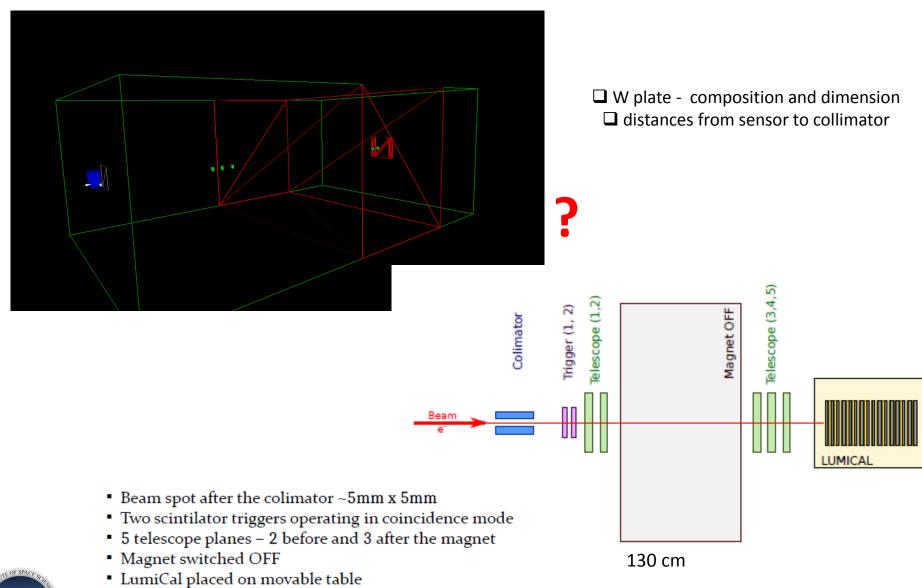

conductive glue³


Part A Bisphenol A epoxy resin Part B N(3-dimethylaminopropyl)-1,3-propylenediamine

Mixed 1:1

TRA-DUCT 2902 epoxy with silver filling http://bondingsource.com/techdata/TRA-DUCT%202902-EN.pdf

Carbon-fiber support4 700-750 um thick outside sensor area



2020 test-beam set-up in Geant4

Geant 4 simulation conditions

Physics list

-PAI for the e+, e-, gamma interaction with silicon sensors and standard EM model for the interaction with tungsten plates and other materials

Beam

- e-, 5GeV, uniform distribution inside a square: of 5 x 5mm^2

TO DO

- the geometry of 2020 TB implemented in Geant4 (right dimension)
- simulated the energy deposition on every sensor pad
- determine the energy deposition on sensors
- determine the longitudinal shower development
- <u>î</u>
- **.** 3

