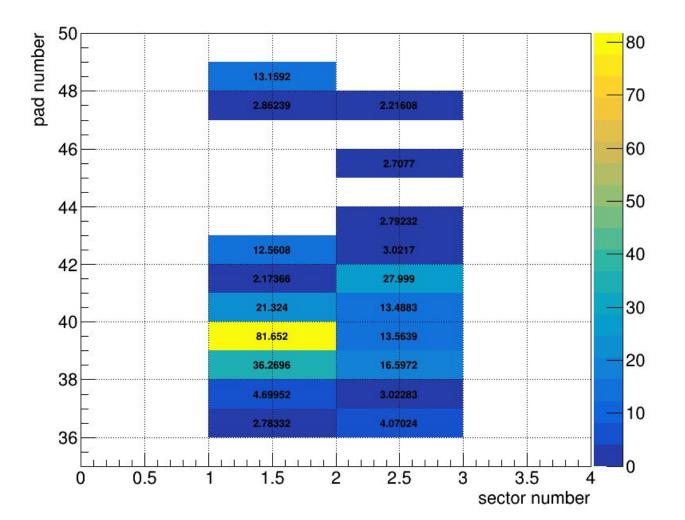
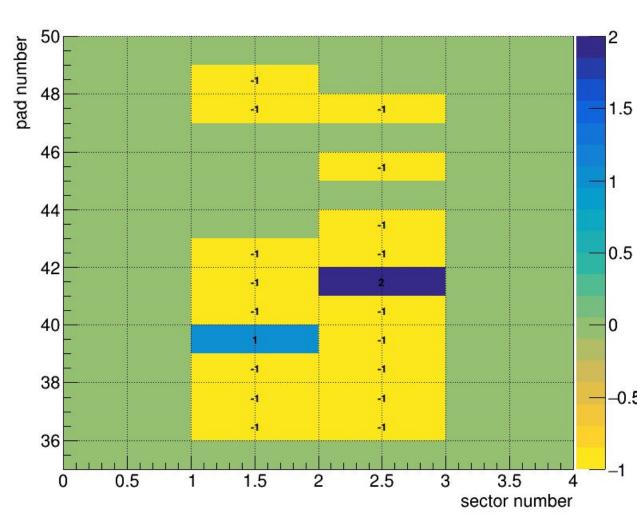
Back-scattering update

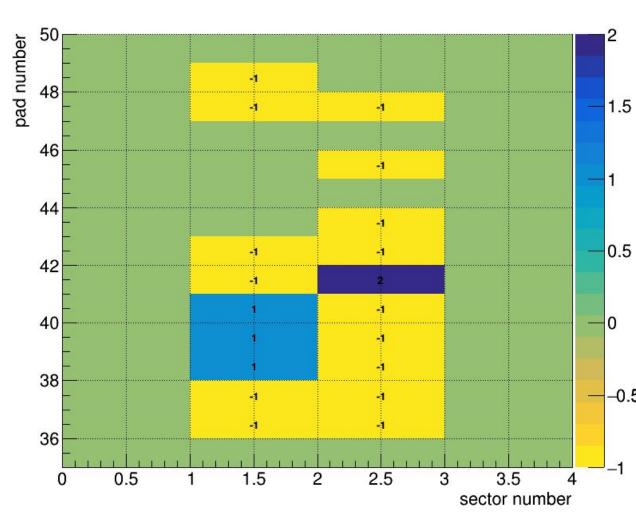
Bohdan Dudar

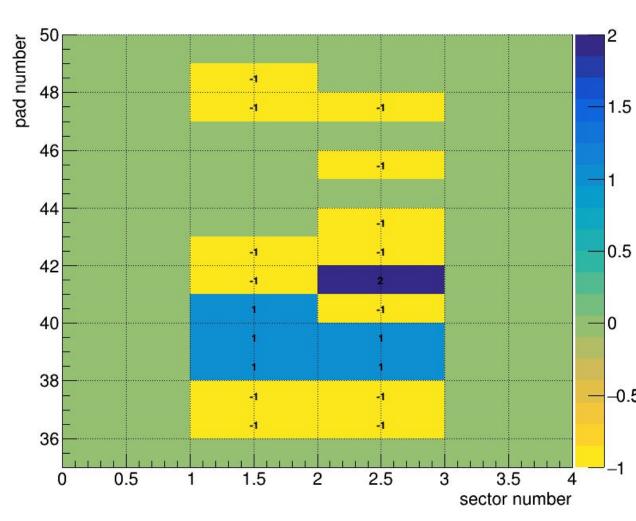

Clustering

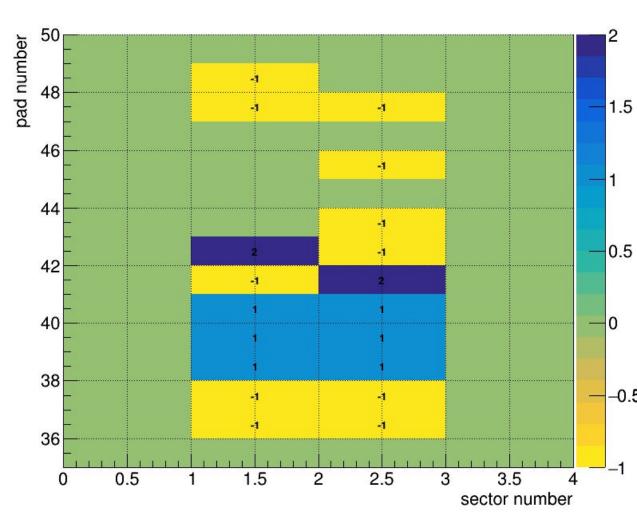
 A seed tower is defined as a local maximum of energy deposited in more than one pad inside the tower.

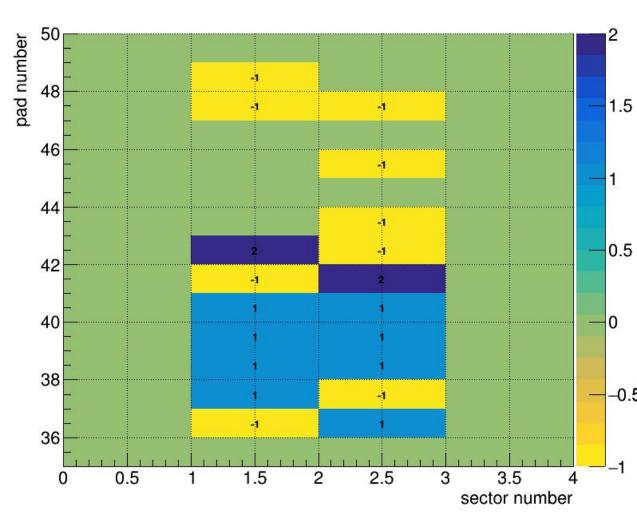


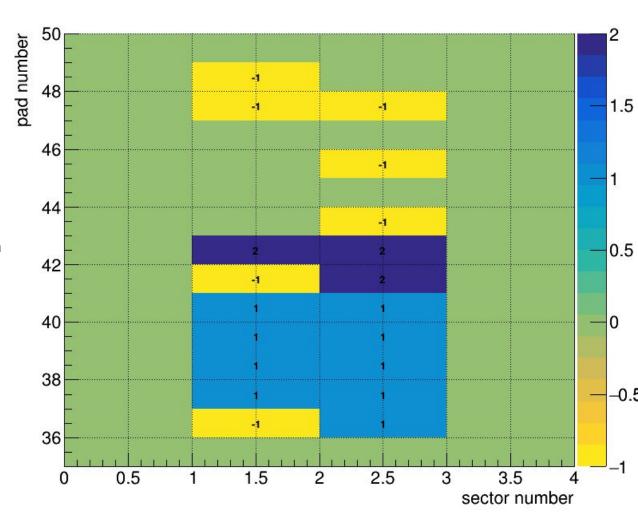
 Neighbor towers with less but non-zero energy are attached to the seed tower to form a cluster.

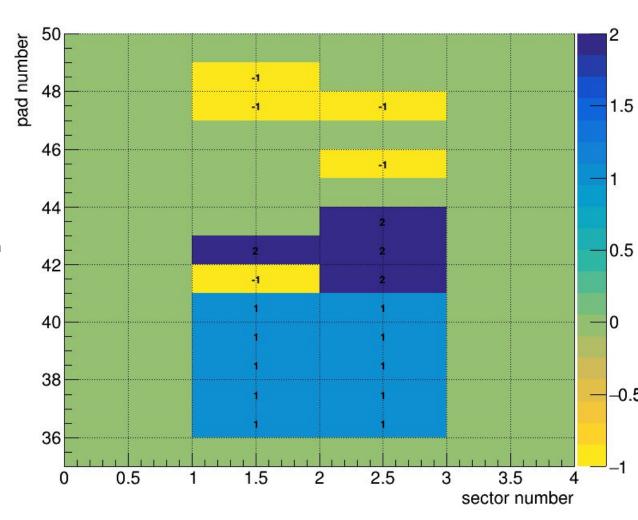

- 1. A seed tower is defined as a local maximum of energy deposited in more than one pad inside the tower.
- 2. In the loop on the towers that not attached to any cluster
 - a. Find neighbor towers (±1 pad and±1 sector) which already attached to some cluster.
 - b. If found: pick the most energetic neighbor tower which attached to some cluster X.
 Attach current tower to the same cluster X.
 - c. If not found: skip and go to the next tower.
- 3. Repeat (2) till towers will stop attaching to new clusters.
- 4. Increase distance to accept tower as neighbor "+1" and repeat (3).
- 5. Repeat (4) till all towers will attach to some clusters.
- 6. Merge cluster pairs if condition is met.


- 1. In the loop on the towers that not attached to any cluster
 - a. Find neighbor towers (±1 pad and±1 sector) which already attached to some cluster.
 - b. If found: pick the most energetic neighbor tower which attached to some cluster X.
 Attach current tower to the same cluster X.
 - c. If not found: skip and go to the next tower.
- 2. Repeat (2) till towers will stop attaching to new clusters.

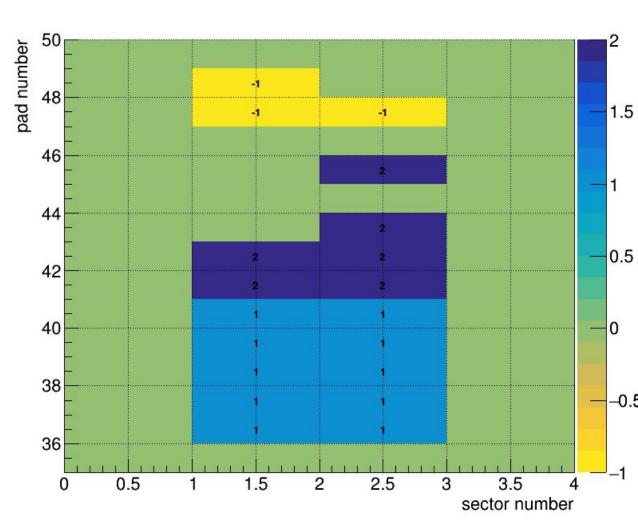

- 1. In the loop on the towers that not attached to any cluster
 - a. Find neighbor towers (±1 pad and±1 sector) which already attached to some cluster.
 - b. If found: pick the most energetic neighbor tower which attached to some cluster X.
 Attach current tower to the same cluster X.
 - c. If not found: skip and go to the next tower.
- 2. Repeat (2) till towers will stop attaching to new clusters.


- 1. In the loop on the towers that not attached to any cluster
 - a. Find neighbor towers (±1 pad and±1 sector) which already attached to some cluster.
 - b. If found: pick the most energetic neighbor tower which attached to some cluster X.
 Attach current tower to the same cluster X.
 - c. If not found: skip and go to the next tower.
- 2. Repeat (2) till towers will stop attaching to new clusters.


- 1. In the loop on the towers that not attached to any cluster
 - a. Find neighbor towers (±1 pad and±1 sector) which already attached to some cluster.
 - b. If found: pick the most energetic neighbor tower which attached to some cluster X.
 Attach current tower to the same cluster X.
 - c. If not found: skip and go to the next tower.
- 2. Repeat (2) till towers will stop attaching to new clusters.

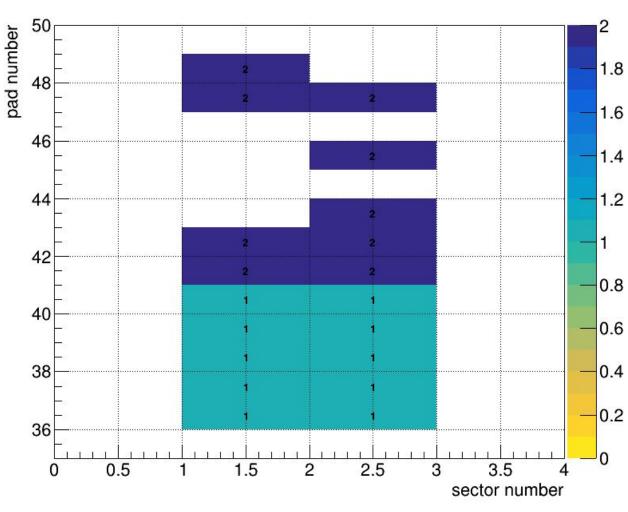

- 1. In the loop on the towers that not attached to any cluster
 - a. Find neighbor towers (±1 pad and±1 sector) which already attached to some cluster.
 - b. If found: pick the most energetic neighbor tower which attached to some cluster X.
 Attach current tower to the same cluster X.
 - c. If not found: skip and go to the next tower.
- 2. Repeat (2) till towers will stop attaching to new clusters.

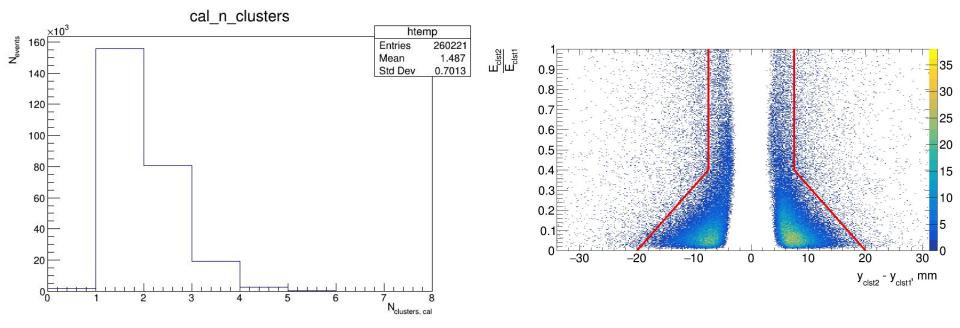
- 1. In the loop on the towers that not attached to any cluster
 - a. Find neighbor towers (±1 pad and±1 sector) which already attached to some cluster.
 - b. If found: pick the most energetic neighbor tower which attached to some cluster X.
 Attach current tower to the same cluster X.
 - c. If not found: skip and go to the next tower.
- Repeat (2) till towers will stop attaching to new clusters.



- 1. In the loop on the towers that not attached to any cluster
 - a. Find neighbor towers (±1 pad and±1 sector) which already attached to some cluster.
 - b. If found: pick the most energetic neighbor tower which attached to some cluster X.
 Attach current tower to the same cluster X.
 - c. If not found: skip and go to the next tower.
- Repeat (2) till towers will stop attaching to new clusters.

3. Increase distance to accept tower as neighbor "+1" and repeat (3).


4. Repeat (4) till all towers will attach to some clusters.



3. Increase distance to accept tower as neighbor "+1" and repeat (3).

4. Repeat (4) till all towers will attach to some clusters.

Merging

pID algorithm

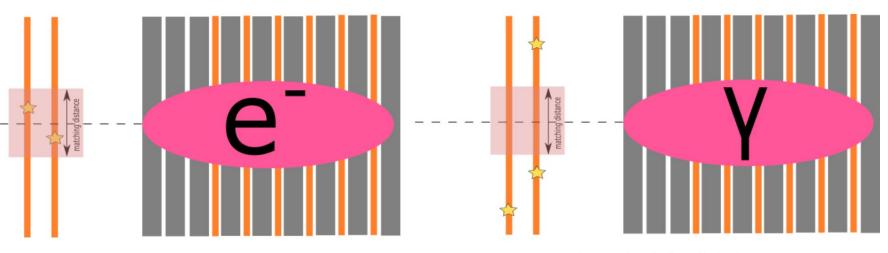


Figure 1: Example of identified electron.

Figure 2: Example of identified photon.

BS effect on pID: Larger statistics + excluded PS

Before:

Ν		.	
	U	VV	

	Number of events	
Total MC generated	400 000	
Have clear separate 2 clusters	55 935	
+ without PS	51 166	
+ without BS	49 346	
Total BS events	1820	

	Number of events
Total MC generated	19 600 000
Have clear separate 2 clusters	2 751 040
+ without PS	2 515 161
+ without BS	2 424 860
Total BS events	92 301

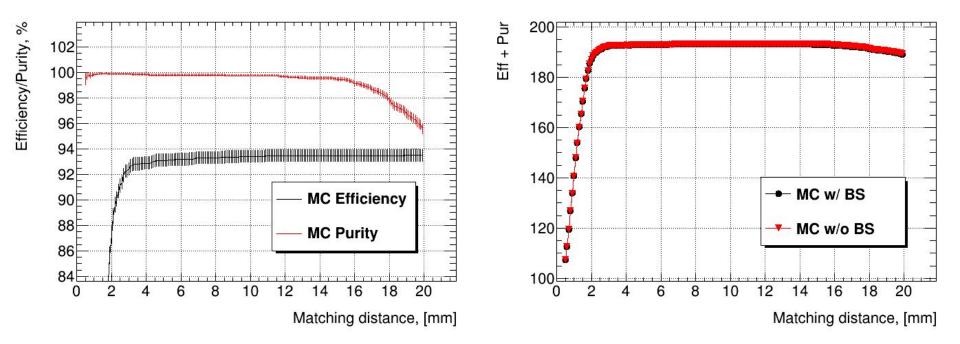
Clear separate 2 clusters means: Most energetic cluster at: 27.8< pad <38.9 (bent electron) 2nd most energetic cluster at: 43.4< pad <54.4 (photon) BS effect on identification: Uncertainties of Eff/Put

Before: Poisson $\delta\epsilon = rac{k}{N} \sqrt{rac{1}{k} + rac{1}{N}}$

Now: Binomial $\delta \epsilon = \frac{k}{N} \sqrt{\frac{1}{k} - \frac{1}{N}}$

BS effect on identification: Uncertainties of the diff

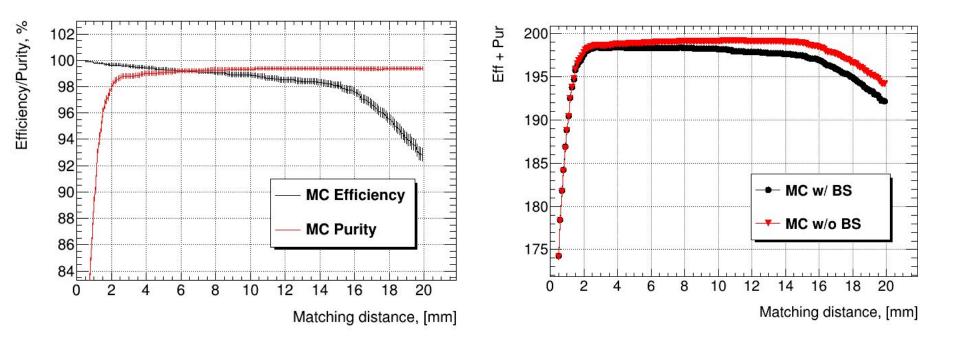
Before: assumed uncorrelated


Now: if correlated

$$\sigma_{x-y} = \sqrt{\sigma_x^2 + \sigma_y^2} \qquad \sigma_{x-y} = \sqrt{\sigma_x^2 + \sigma_y^2(1 - rac{2N_y}{N_x})}$$

BS effect on **electron** identification:

Electron identification	Efficiency, %	Purity, %	optimal matching distance
MC w/ BS	90.966 ± 0.018	99.803 ± 0.003	$3 \mathrm{mm}$
MC w/o BS	90.941 ± 0.018	99.813 ± 0.003	$3 \mathrm{mm}$
BS effect (difference)	0.025 ± 0.018	-0.01 ± 0.003	


Electron efficiency and purity plots and their sum

BS effect on **photon** identification:

Photon identification	Efficiency, %	Purity, %	optimal matching distance
MC w/ BS	99.571 ± 0.004	98.228 ± 0.008	2.5 mm
MC w/o BS	99.820 ± 0.003	98.226 ± 0.008	$2.5 \mathrm{mm}$
BS effect (difference)	-0.249 ± 0.004	0.002 ± 0.008	

Photon efficiency and purity plots and their sum

Take into mind:

- Different clustering algorithm \rightarrow another result
- Different pID algorithm \rightarrow another result
- >2 showers cases are not studied
- Overlapping showers are not studied

Summary

 Back scattering affects photon identification efficiency for 0.25 % at 2.5 mm matching distance

Derivation of Poisson formula:

$$egin{aligned} &\Delta k = \sqrt{k} \ &\Delta N = \sqrt{N} \ &\Delta \epsilon = \Delta(rac{k}{N}) = \sqrt{(rac{\partial \epsilon}{\partial k}\Delta k)^2 + (rac{\partial \epsilon}{\partial N}\Delta N)^2} = \ &= \sqrt{(rac{1}{N}\Delta k)^2 + (rac{k}{N^2}\Delta N)^2} = \ &= \sqrt{rac{k}{N^2} + rac{k^2}{N^3}} = rac{k}{N}\sqrt{rac{1}{k} + rac{1}{N}} \end{aligned}$$

Derivation of Binomial formula:

Assume that k events passing the cut distributed Binomially: $Bin(\in, N)$;

 \in - true efficiency, as we don't know it, we put our estimate into formula.

$$\Delta k = \sqrt{Var(k)} = \sqrt{\epsilon(1-\epsilon)N}, \text{ (aka: npq)}$$
$$\epsilon = \frac{k}{N}$$
$$\Delta \epsilon = \Delta(\frac{k}{N}) = \frac{\Delta k}{N} = \frac{1}{N}\sqrt{\epsilon(1-\epsilon)N} =$$
$$= \frac{1}{N}\sqrt{\frac{k}{N}(1-\frac{k}{N})N} = \frac{k}{N}\sqrt{\frac{1}{k}-\frac{1}{N}}$$

Derivation of correlation formula: Total: k₁, N₁ No BS: k₂, N₂ BS: k₃, N₃

 $Cov(k_1, k_2) = Cov(k_2 + k_3, k_2) = Cov(k_2, k_2) + Cov(k_3, k_2) = Var(k_2) + 0 = Var(k_2)$ (4)

$$Var(\epsilon_1 - \epsilon_2) = Var(\frac{k_1}{N_1} - \frac{k_2}{N_2})$$

$$\tag{5}$$

$$= Var(\epsilon_1) + Var(\epsilon_2) - \frac{2}{N_1 N_2} \cdot Cov(k_1, k_2)$$
(6)

$$= Var(\epsilon_1) + Var(\epsilon_2) - \frac{2}{N_1 N_2} \cdot Var(k_2)$$
⁽⁷⁾

$$= Var(\epsilon_1) + Var(\epsilon_2)(1 - \frac{2N_2}{N_1})$$
(8)

Therefore:

$$\sigma_{1-2} = \sqrt{\sigma_1^2 + \sigma_2^2 \cdot \left(1 - \frac{2N_2}{N_1}\right)} \tag{9}$$