Particle ID in the AHCAL using **Boosted Decision Trees**

CALICE Analysis meeting

Vladimir Bocharnikov, DESY May 20, 2020

Outline

AHCAL Particle ID using BDTs

- CALICE AHCAL test beam prototype
- Particle identification
- Motivation and method overview
- Data preparation
- Boosted Decision Tree method description
- Parameters and input
- Resulting metrics
- Application to test beam data
- Sources of confusion
- Summary and outlook

CALICE AHCAL

Test beam prototype.

38 active layers of 24x24 scintillator tiles (3x3 cm²) alternating with 1.7 cm steel absorber + 1 "Tokyo" layer with 6x6 cm² tiles

In total: ~22000 channels, ~4 λ

Motivation for particle ID

In test beam data

We always deal with admixture of other particles.

⇒To investigate detector response to particles of given type we need to perform particle identification

Particle ID workflow

Classification procedure

Pre-analysis

- Calculation of common observables
- Clustering and track finding*
 Event filtering
- By number of hits:nHits > nHits_min
- multi-particle and upstream
 shower event rejection

BDT multiclass model

trained on simulations (10-200GeV).

3 classifiers:

Hadron classifier

Trained on showering pions

Electron classifier

Trained on electrons

Muon (muon-like) classifier

Trained on muons

^{*} Described during CALICE Collaboration Meeting at CERN: https://agenda.linearcollider.org/event/8213/contributions/44343/attachments/34812/53758/VBocharnikov CALICE meeting CERN.pdf

Event filtering

Simplified algorithms.

Clustering: Hits are grouped in clusters if if they are neighbours in volume. First 5 layers are taken into account

If $N_{Clusters} > 1 =>$ multi-particle event (or upstream shower)

Event filtering

Simplified algorithms.

Clustering: Hits are grouped in clusters if if they are neighbours in volume. First 5 layers are taken into account

If $N_{Clusters} > 1 =>$ multi-particle event (or upstream shower)

MIP tracking: Construct towers with same x and y coordinates. First 5 layers are taken into account.

If *N_{MIPTracks}* > 1 => multi-particle event

Model and input. TBJune18.

Software and model:

- LightGBM package
- Multi-class Gradient Boosted
 Decision Tree
- Multi log loss function

Model and input. TBJune18.

Software and model:

- LightGBM package
- Multi-class Gradient Boosted
 Decision Tree
- Multi log loss function

Gradient Boosting:

Method combines many sequential decision trees with weights. Weights are optimised during training by calculating the gradience of loss function

Model and input. TBJune18.

Software and model:

- LightGBM package
- Multi-class Gradient Boosted
 Decision Tree
- Multi log loss function

Gradient Boosting:

Method combines many sequential decision trees with weights. Weights are optimised during training by calculating the gradience of loss function

Multi log loss:

$$L = -\frac{1}{N} \sum_{i}^{N} \sum_{j}^{3} Y_{ij} ln(p_{ij})$$

Where N - number of events in the test sample, 3 - number of classes, Y_{ij} is binary variable with the expected labels and p_{ij} is he classification probability output by the classifier for the i-instance and the j-label.

Model and input. TBJune18.

Software and model:

- LightGBM package
- Multi-class Gradient Boosted
 Decision Tree
- Multi log loss function

Training and test set:

- MC particles 10-200GeV QGSP_BERT_HP physics list simulated and reconstructed using June 2018 setup:
 - pions (st ≤ 40)
- electrons
- muons
- Simulated data is split 50/50 test/train

Observables:

- Number of hits
- Shower start
- Event radius
- Center of gravity in z
- Energy fraction in first 22 layers
- Energy fraction in shower center
- Energy fraction in shower core
- Fraction of track hits
- Number of track hits
- Number of layers with hits from last 5
- Mean hit energy after shower start

Resulting metrics

After training

ROC curves for the test data

$$*TPR = \frac{TP}{TP + FN}, \quad FPR = \frac{FP}{FP + FN}$$

Multi log loss:

$$L = -\frac{1}{N} \sum_{i}^{N} \sum_{j}^{3} Y_{ij} ln(p_{ij}) = 0.0086$$

Where N - number of events in the test sample, 3 - number of classes, Y_{ij} is binary variable with the expected labels and p_{ij} is the classification probability output by the classifier for the i-instance and the j-label.

Output. Comparison with data.

Results on test beam data taken in June 2018

Energy sum distributions for 10GeV runs

- Energy expectation for electron events in pion run is close to real electron run
- Long high energy tail of muon-like events
- Low energy tail for electrons
- Most of hadron events in electron run are at low energy

Results on test beam data taken in June 2018

Energy sum distributions for 80GeV runs

 Energy expectation for electron events in pion run is close to real electron run

80 GeV Pion

(zoomed in)

4000

4000

4500 5000

Esum. MIP

E_{sum}, MIP

3000

2500 3000 3500

 Energy distribution of hadron events in 80GeV electron run looks very similar to actual 80GeV pion

Results on test beam data taken in June 2018

Energy sum distribution for 40GeV muon run

- Very low admixture of other particles
- Little fraction of delta electrons can be classified as hadron event

Sources of confusion

From 10GeV pion run

- Compact pion showers with late shower start can be classified as muons
 - Additional variables can improve identification
 - Fraction << 1%

Sources of confusion

From 10GeV electron run

- Multi-particle/upstream shower events with small fragments can be classified as hadron events
 - Multi-particle events can be partly filtered out using timing information

Sources of confusion

From 10GeV electron run

- Some events are contaminated with cosmic muons
 - Multi-particle events can be partly filtered out using timing information

Summary and outlook

AHCAL Particle ID using BDTs

- ☑ BDT particle ID method in the AHCAL was discussed
 - Method shows good performance

 - ☐ Feature importance study* is planned as next step
 - *sort input observables by importance to drop less useful ones
- ☐ More advanced event filtering for data is needed
 - ☐ Timing analysis

Backup

Disadvantages of cut-based method

Towards BDT ID

Cut-based method:

- > 10 steering parameters for each energy
- Asymmetric distributions/ long tails can be problematic

Cut artefacts

Multivariate methods:

- Can provide probabilistic classifier trained on given distributions of observables
- One model can be used for whole dataset

Will be discussed during one of the upcoming HGCAL meetings

Track finding

Important tool for shower characterisation, Can be used for particle ID

Track candidates:

2/3 neighbours in surrounding volume. 2 of them on different sides

Candidates ordered:

- z-coordinate
- Distance to (0,0,z) in same layer

Track finding

Grouping candidates into tracks

Hit#1
A
Seed
(first from candidates)

Nearest neighbour of hit#1

Distance check

Hit#2 **B** Nearest neighbour of hit#1

Distance check

Angle check with AB

Hit#3

Nearest neighbour of hit#1

Distance check

Angle check with **AC**

Angle check with AB

After grouping, track angle is obtained using MSE linear regression

** Procedure repeated iteratively **

Tracking quality check

TBMay18 10GeV pion run. 50039 events.

Scintillator path length correction for track hits

Resulting ID variables

BDT output

Comparison with separate model trained only on 10GeV particles.

10GeV MC electron test sample 50000 events

10GeV MC pion test sample 50000 events

Application on electron data

Of trained BDT model

Electron events: classifier_{ele}>0.5

