STATUS ON AHCAL PION ANALYSIS

Olín Pínto CALICE Analysís Meeting 20th May 2020

Motivation

Part I

 \rightarrow Response, linearity & resolution

Part II

 \rightarrow Tile-gap study using MC

Summary and outlook

MOTIVATION

\rightarrow Important parameters of a calorimeter:

- → Linearity of the energy measurement
- → Precision of the energy measurement (resolution, ΔE / E) in general limited by fluctuations in the shower process
- → To achieve an improvement in the single particle energy resolution in the energy range from 10 GeV to 200 GeV the response to deposited hits/energy in the calorimeter for hadronic shower needs investigation
- → First pion results using AHCAL is presented in this talk (work in progress: numbers and figures shown in this presentation are not final)

Pion Data & Selection

Data used in this talk

- → Pions from June 2018 CERN test beam
- → 20k events are simulated using QGSP_BERT_HP physics list from GEANT4 v10.03 for all available energies (10, 20, 30, 40, 60, 80, 120, 160 & 200) with a tile gap size of 0.7 mm
- → Beam gun position and the smearing parameters are obtained from the mean and RMS of the centre of gravity distributions in x and y from data and are used as an estimate for beam size

Selection

- → Performed **PID** selection including **shower start** between layer 1 to layer 6 to avoid leakage
- → ~ 25 30 % events are selected (very low statistics are observed due to hard selection and low MC events)
- → Reconstructed energy involves tail catcher (TC) to account for leakage
 - \rightarrow Simple weights are applied to TC based on absorber ratio

AHCAL + Tail Catcher setup CERN 2018

DESY. | Status on AHCAL Pion Analysis | Olin Pinto

Standard variables

Energy sum and number of hits

- \rightarrow The number of hits in MC are higher compared to data
- \rightarrow The red line indicated the result of performing gaussian fits

200 GeV

10 Gev

Selected Pions

For both data as well as MC, hit distributions are fitted with the function: Gaussian with 2 exponential tails and energy distributions are fitted with the Gaussian mean +- 1.5 sigma

80 Gev

Selected Pions

For both data as well as MC, hit distributions are fitted with the function: Gaussian with 2 exponential tails and energy distributions are fitted with the Gaussian mean +- 1.5 sigma

Selected Pions

For both data as well as MC, hit distributions are fitted with the function: Gaussian with 2 exponential tails and energy distributions are fitted with the Gaussian mean +- 1.5 sigma

Response & Linearity

 \rightarrow Mean & RMS of nHits distribution is extracted using the fit function: Gaussian with 2 exponential tails

Mean and RMS of the energy distribution are extracted using mean +- 1.5 sigma to get rid of statistical fluctuations in the tails

- \rightarrow Reconstructed energy(MIP) is fitted within the energy range [20,160]
- \rightarrow Linearity looks reasonable for both data and MC (within ~5%)

Page 11

Relative energy Resolution

→ The functional form is employed to fit the relative energy resolution which consist of: Stochastic term, noise term & constant term

- → The noise term is fixed to zero as the detector has very low noise level
- \rightarrow ~ 8 to 10 % difference between Data & MC
- \rightarrow The errors are extracted from fit and added in quadrature

DESY. | Status on AHCAL Pion Analysis | Olin Pinto

PART II

Tile-gap study

Status on AHCAL Pion Analysis | Olin Pinto

 \rightarrow What are the actual tile sizes?

Not to scale

 \rightarrow Have an influence on the measurements?

Quality Control – From each 50-tile-box: One Scan

Squeezing with caliper is not allowed

Half integrating sphere

https://agenda.linearcollider.org/event/7807/contributions/40519/attachments/32551/49482/TileWrapping-CollMeeting2017.pdf

Stephan Martens

CALICE AHCAL main meeting: Tile reflector wrapping

Energy sum distributions

→ Effect of larger tile-gap on energy sum prominent in case of electrons compared to pions

→ The distribution are fitted with gaussian mean +- 2. sigma to extract the mean and width

Page 16

Fit function used

The nominal tile size, $F_0 = (30.15 \text{ mm})^2$

 $F(gap) = (30.15 mm - gap)^2$

Visible energy $(E_{vis}) \approx$ Number of incident particles (N)

 $E_{vis}(gap)/E_0 = F(gap)/F_0$

$$E_{vis}$$
 (gap) = $E_0 (1 - gap/30.15)^2 \longrightarrow a \cdot (1 - x/30.15)^2$

Relative resolution, $\sigma_{vis}/E_{vis} \approx 1/\sqrt{E}$

$$\frac{\sigma_{\text{vis}}}{\mathsf{E}_{\text{vis}}}(\text{gap}) = \sigma_0/\mathsf{E}_0 \ (\frac{1/\sqrt{\mathsf{E}_{\text{vis}}}}{1/\sqrt{\mathsf{E}_0}}) \qquad \qquad \frac{\sigma_{\text{vis}}}{\mathsf{E}_{\text{vis}}}(\text{gap}) = \sigma_0/\mathsf{E}_0 \ (\frac{\sqrt{\mathsf{E}_0}}{\sqrt{\mathsf{E}_{\text{vis}}}})$$

 $\frac{\sigma_{\text{vis}}}{\mathsf{E}_{\text{vis}}}(\mathsf{gap}) = \sigma_0/\mathsf{E}_0 \quad (\frac{30.15}{30.15} - \mathsf{gap}) \longrightarrow \mathsf{a} / (30.15 - \mathsf{x.b}) \quad \text{``b'' should be 1 in the purely geometrical case}$

DESY. | Status on AHCAL Pion Analysis | Olin Pinto

<E_Sum> Vs. Dead-space

a. (1 – x/30.15)²

Resolution Vs. Dead-space a/(30.15 - x.b)

→ Both electrons and pions show a reduced energy sum with an increase in gap size (which agrees reasonably well with the assumption that this is purely a geometrical effect) and the effect on resolution for pions is small
→ Dead-space 0.7 mm has been used in the pion analysis

- → The AHCAL response, linearity and resolution are measured and are in reasonable agreement between data and simulation
- \rightarrow Large MC production is under process
- \rightarrow Tile-gap of 0.7 mm is used in simulation

5 Outlook

- \rightarrow Systematics to be done
- \rightarrow Improvement in single particle energy resolution
- \rightarrow Look deep into the shower shapes to understand the different components of the hadronic shower
- \rightarrow More detailed studies comparing different physics models provided by the GEANT4

Beam Profile

Tuned for 20K MC events

Energy (GeV)	Run number	CoG mean X (mm)		CoG mean Y (mm)		CoG RMS X (mm)		CoG RMS Y (mm)	
10	61265	4.28	4.02	-1.84	-2.16	35.8	35.05	38.33	37.1
20	61272	5.7	6.05	-5.76	-4.65	32.03	30.33	30.24	29.27
30	61378	-115.21	-115.06	-19.07	-18.42	31.98	30.31	26.2	26.11
40	61275	9.23	9.06	7.43	6.91	30.98	29.77	25.35	24.28
60	61262	9.32	9.39	-7.67	-7.72	31.24	28.61	21.47	19.98
80	61279	8.79	8.6	0.64	0.82	30.37	28.35	20.58	19.38
120	61233	8.13	8.11	1.51	0.44	14.96	13.81	12.97	12.81
160	61287	5.63	5.35	1.87	2.19	14.42	14.16	12.43	12.80
200	61201	-0.28	-0.78	10.03	9.41	14.42	13.77	11.59	13.99

The Z coordinate of the beam was always set to -50000 mm

Reconstructed Energy in GeV

DESY. | PION ANALYSIS | Olin Pinto |

Resolution Vs. Dead-space

a / (30.15 - x)

699.3/3

81.97 ± 0.4925

p0

ē

0.8

b0

 χ^2 / ndf

0.8

Dead-space (mm)

1.994/3

467.7 ± 3.443

Electron energy resolution

Resolution

