Shower shape analysis on the 2017 SiW-ECAL data

Fabricio Jiménez, Vincent Boudry

Outline

1. Data set from the SiW-ECAL 2017 Test Beam

2. Selection of events and cell hits for modelling electromagnetic showers

3. Shower modelling

Data used*

• Scans of various energies: 1, 2, 3, 4, 5, 5.8 GeV.

- Different W configurations with varying amounts of W in front of each slab:
 - W-configuration 1: 0.6, 1.2, 1.8, 2.4, 3.6, 4.8 and 6.6 *X*₀
 - W-configuration 2: 1.2, 1.8, 2.4, 3.6, 4.8, 6.6 and 8.4 *X*₀
 - W-configuration 3: 1.8, 2.4, 3.6, 4.8, 6.6, 8.4 and 10.2 X₀

• Energy calibrated to mips

\rightarrow The goal is to use the data collected from positron beams to model EM shower profiles

* Located in TB2017-06/DESY/ConvertedData/pass3/Tungsten/conf{1,2,3}/grid20/{1, 2, 3, 4, 5, 5.8}GeV_build.root

The prototype

Global selection of events

Use two criteria: 1. numbers of slabs hit by the shower and 2. Energy of hits in cells

Pedestal gaussian fit

Energy pedestal of all hits in all showers (config. 2 @ 2 GeV) \rightarrow a "spike" at 0 mips (removed)

After selection

Hits passed per layer. Conf 2, 2GeV Cuts: μ + 6.0 σ , nhit_slab \geq 5

Shower modelling

Shower model

Model the longitudinal and transversal energy profiles of showers

Transversal (per-layer) model

Double gaussian (6 parameters) shared mean, no correlation ($\rho 1 = \rho 2 = 0$) $\sigma 1 < \sigma 2$

Longitudinal

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

$$A_1 \mathcal{N}(\boldsymbol{\mu}, \mathbb{1}\sigma_1) + A_2 \mathcal{N}(\boldsymbol{\mu}, \mathbb{1}\sigma_2)$$

- Fit the longitudinal and transversal parts separately
- Fit the longitudinal part using integral of double gaussian as prompt for E per layer

Transversal fits

Fit on each layer the double gaussian model

Evolution of mean x (top) and mean y (bottom)

Longitudinal fits

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

- Black dots come from integrating the model on each layer (prev. slide)
- Red dots are the sum of hit energies
- Solid lines are respective fits

 \rightarrow The integral of the model slightly underestimates the integral of hit energies

 \rightarrow Function fit better than 4th layer deficit?

Two problematic layers/fits

Conf 2, 5 GeV, third layer?

Two problematic layers/fits

Conf 2, 5.8 GeV, third layer?

Problematic layer

Conf 3, 5 GeV, second layer?

15

Conclusion

- First attempt at fitting shower shapes on SiW-ECAL data (7 layers)
 - Might help handle masked cells
 - Still some issues with calibration mip→shower ?
 - To be x-checked
- To Do's
 - Robustness against noise cuts
 - Robustness of method to be assessed on simulation data
 - Adapt to individual showers
 - Check beam profile
 - Use integrated (over cell surface) functions
 - Try various lateral shower profiles
 - Complete with full 3D profiles

Shower transversal model

• Full single gaussian (6 param)

$$A \ \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

- Constrained single gaussian (4 param) no corr. (ρ = 0), same cov. (σ = σ x = σ y) $A \mathcal{N}(\mu, \mathbb{1}\sigma)$
- "Full" double gaussian (10 param) shared mean, independent cov.

$$A_1 \ \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) + A_2 \ \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$$

• Constrained double gaussian (6 param) shared mean, no corr. ($\rho 1 = \rho 2 = 0$) $\sigma 1 < \sigma 2$

$$A_1 \mathcal{N}(\boldsymbol{\mu}_1, \mathbb{1}\sigma_1) + A_2 \mathcal{N}(\boldsymbol{\mu}_2, \mathbb{1}\sigma_2)$$

Evolution of sigma 1 (top) and sigma 2 (bottom)

19

Fitting different models

BCID*

* Slide from Vincent

BCID Reconstruction*

- 1 event = BCID±1 (to account for over-the-clock-boundary events)
- What is the effect of bad reconstruction?
 - if corrected BCID wrong:
 - split events \Rightarrow worst case = Energy / 2 in 2 events (separated by 4096)
 - low tails in resolution or thrown-out events
 - if using uncorrected BCID (= true BCID%4096):
 - $\blacksquare \quad \text{include \times2$ the noise in the events} \rightarrow \text{Small correction}$
- Ideally, either:
 - tag BCID crossing (force trigger @ BCID=4095?)
 - have spill length \leq 4096×1/*f* ~ 0.8ms