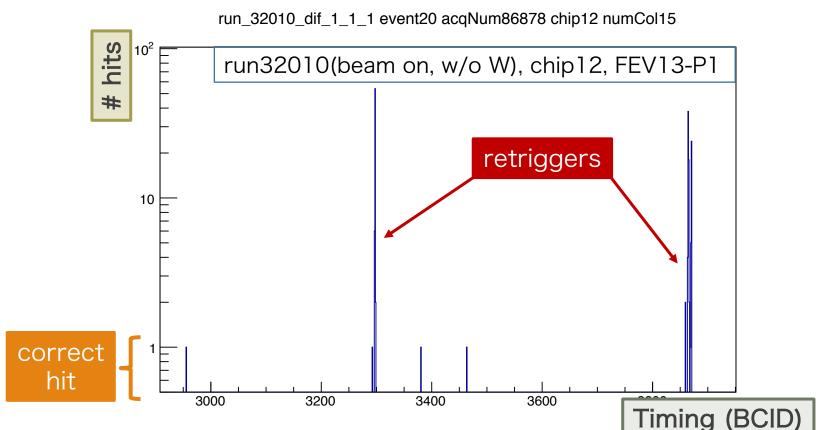
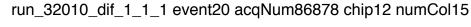


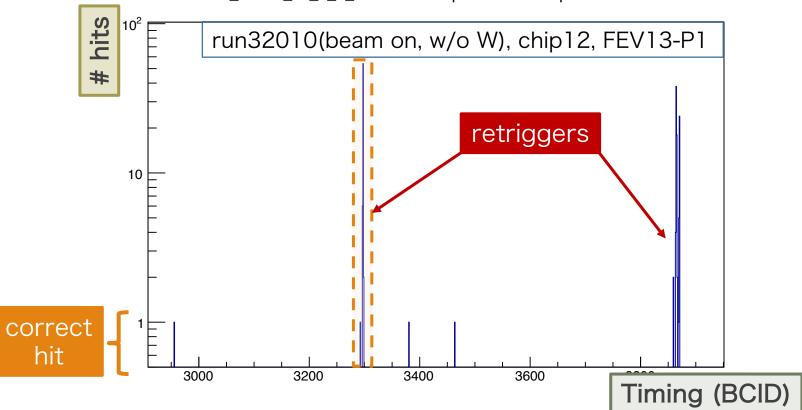
Study for Retriggers of SiW-ECAL



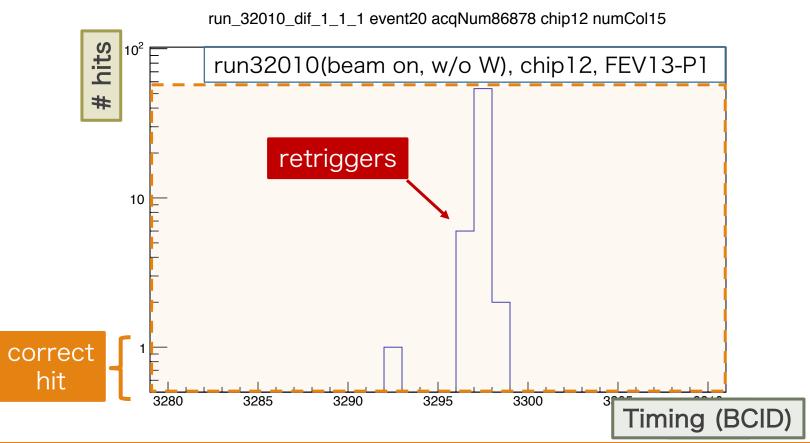
Yu Kato
The University of Tokyo

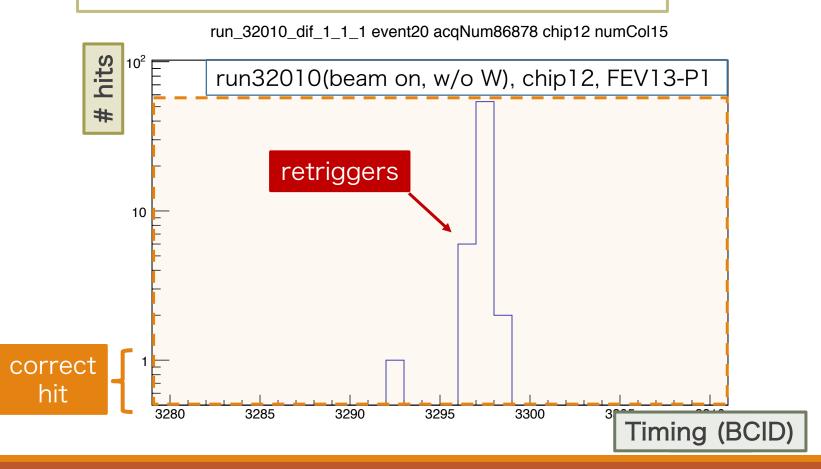
CALICE Analysis Meeting 20th May 2020


What are Retriggers?


- SiW-ECAL technological prototype has an issue called "retriggers".
 - many fake hits just after correct hit(s)
 - consecutive BCIDs
- Memory cells are occupied by retriggers and may fail to store normal events.

What are Retriggers?


- SiW-ECAL technological prototype has an issue called "retriggers".
 - many fake hits just after correct hit(s)
 - consecutive BCIDs
- Memory cells are occupied by retriggers and may fail to store normal events.


What are Retriggers?

- SiW-ECAL technological prototype has an issue called "retriggers".
 - many fake hits just after correct hit(s)
 - consecutive BCIDs
- Memory cells are occupied by retriggers and may fail to store normal events.

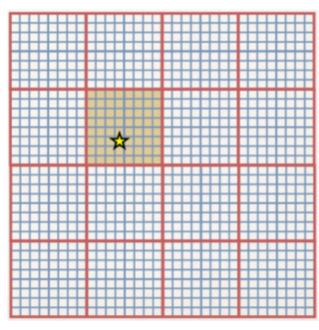
Target of this study

- > Develop retrigger discrimination method
- Evaluate retriggers
- Consider its cause

Data acquisition mechanism of SiW-ECAL

Geometrical structure

- Si pixel: 5.5 × 5.5 mm²
- $\cdot 32 \times 32 = 1024 \text{ ch / slab}$
- 16 ASICs / slab
- 4 Si wafers / slab

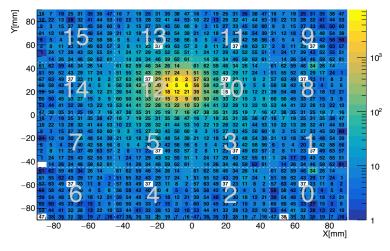

Readout information

- Bunch Crossing ID (BCID)
 f = 5 MHz, Δt = 0.2 μs
- Hit bit
 - self-triggered by each channel
- Analogue output (Any two of the three)
 - Charge ¹High/²Low gain, ³Timing

Readout mechanism

- independently on each ASIC
- 1. Some tracks are triggered within one BCID interval (0.2 µs).
- 2. Analogue outputs from all channels are stored in memory cells (15 SCAs).
- 3. After the acquisition phase(5 Hz, ~ 2.5 ms), all stored data is read out.

Studies for retriggers

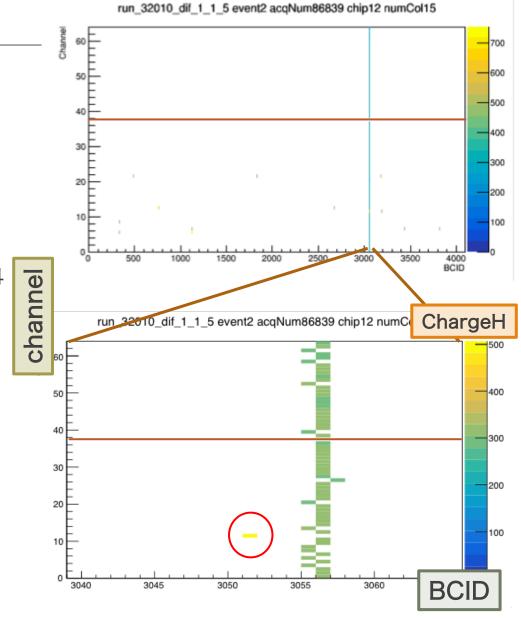

Setup

- We used following data in this talk.
- The data used for evaluation was obtained in TB2019 @ DESY.
- All the results are based on FEV13-K2 so far.

run	beam	Output mode	W absorber
32010	On (e- 3 GeV)	ADC	None

ADC mode: Charge High(×10) & Low(×1)

Hit Map (run_32010_dif_1_1_5)

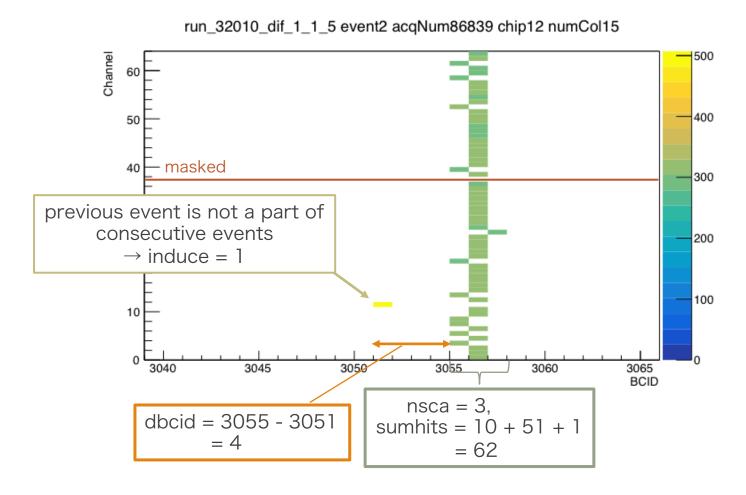


run32010(beam on, w/o W), chip12, FEV13-K2

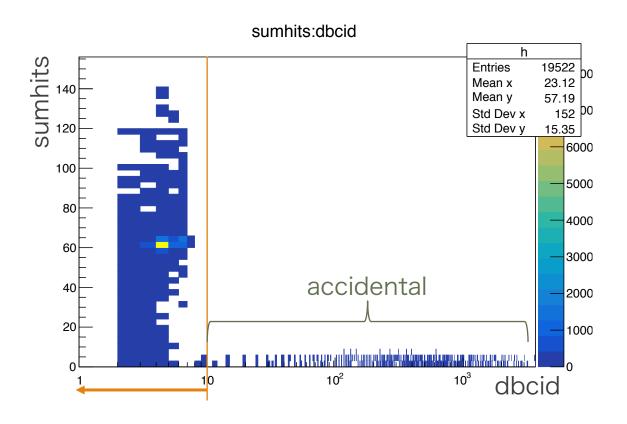
Retriggers: Structure

BCID vs Triggered channels

- The retriggers looks "line".
- Almost all channels are triggered.
 - except <u>masked channel</u> (ch. 37)
 - sometimes one or two channels do not triggered.
- Many consecutive hits occur after 4
- 6 BCIDs from the hit that looks normal. → "Induction"

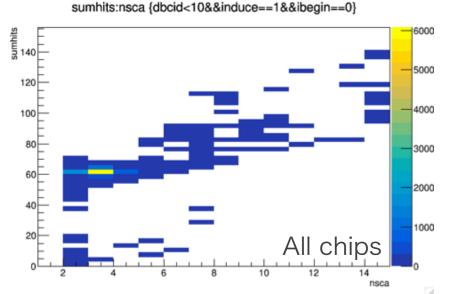


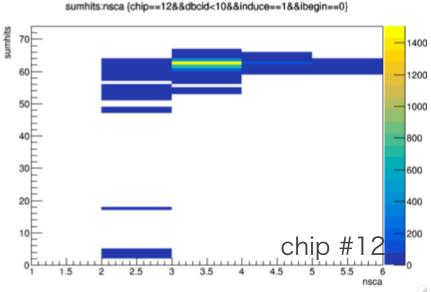
Discrimination Method

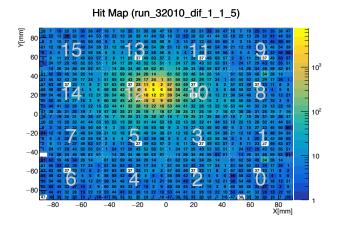

- Previous one
 - $\triangleright \Delta$ boid is less than 15 (adjustable) in 3 consecutive events
 - To extract only normal hits undoubtedly
 - Exclude even the induction events
- Developing one
 - To identify retriggers
 - 1. Merge triggers recorded by consecutive boid
 - 2. Make the variables below to evaluate whether retrigger
 - nsca: Number of merged memory cells
 - sumhits: Total number of hits
 - dbcid: bcid interval between the induction and the start of the merged triggers
 - 3. Set some condition to discriminate normal / induction / retrigger
 - currently: dbcid < 10
 - work in progress

Discrimination Method

- Example:
 - The variables are saved in each time consecutive boids are found.



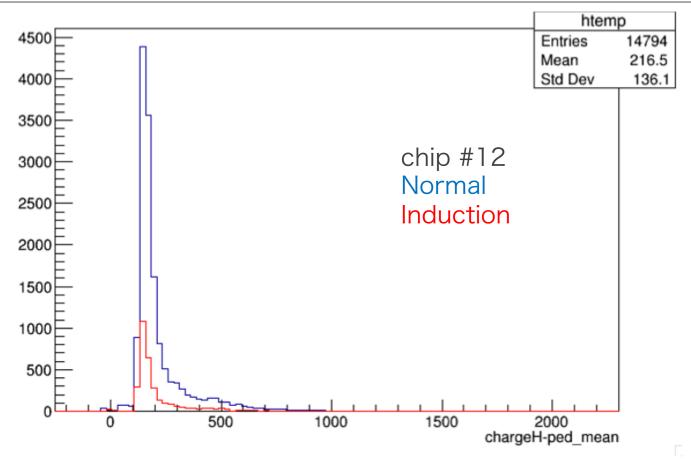

dbcid vs sumhits


- Cut by dbcid is necessary to exclude accidentally consecutive events.
- dbcid < 10 (preliminary)

nsca vs sumhits

- Basic cut is applied.
 - dbcid < 10, induce = 1, not the begin of acquisition
- In all chips result, there are a few events in which both variables are large.
 - > They would be multi-retriggers.
- In only the irradiated chip, almost all the entry is [nsca = 3 & sumhits =62].

Retrigger Rate


run_32010_dif_1_1_5_retrigger.txt
RESULT

Triggered = Empty + Retriggers + Normal Normal ⊃ Induction

IVEDUE	1			L				
Acq Cycle: 14469, Acq Recorded: 7068								
Chip,	Triggered,	Empty,	Retriggers,	Induction,	Normal,	FullSCA,	<pre>Rate(Induction/Normal)</pre>	
0	2819	70	1907	297	842	93	0. 353	
1	3225	59	2224	350	942	84	0.372	
2	2928	66	2007	322	855	77	0.377	
3	5421	154	3567	653	1700	104	0.384	
4	2855	73	1984	305	798	76	0.382	
5	5288	175	3230	667	1883	83	0.354	
6	2439	76	1661	238	702	80	0.339	
7	3319	87	2274	374	958	89	0.390	
8	3763	361	2249	425	1153	87	0.369	
9	2905	83	1938	286	884	87	0.324	
10	18520	788	10149	1895	7583	196	0. 250	
11	4809	123	3215	521	1471	107	0.354	
12	61283	2635	13688	3805	44960	1769	0 . 085	
13	5280	172	3288	635	1820	93	0.349	
14	4116	96	2778	488	1242	74	0.393	
15	2642	86	1666	309	890	78	0.347	

- Many retriggers are occurred in the irradiated chips.
 - > The electron tracks should induce the retriggers.
- The rate of induction/normal seems to be higher in chips far from beam spot.
 - > Is there any causes other than the tracks?

Comparison of triggered charge

- No significant difference between normal and induction distribution.
 - Induction can be treated as a normal hit? (Previously excluded.)

Summary

- New method to discriminate the retriggers is under developing.
- The retrigger rate is evaluated using current method.
- Many retriggers are occurred in the irradiated chips.
 - > The electron tracks should induce the retriggers.
- The rate of induction/normal seems to be higher in chips far from beam spot.
 - Is there any causes other than the tracks?
- No significant difference of charge distribution between normal and induction.
 - Induction can be treated as a normal hit? (Previously excluded.)

To do

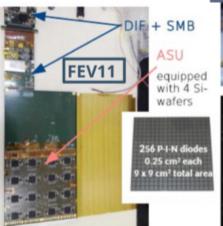
- □ Update the method which can identify the multi-retriggers.
- Comparison of the pedestal between normal and induction.
- □ Check the effect between each chips in the board.
- Verification using a test board
 - after the situation of COVID-19 calms down.

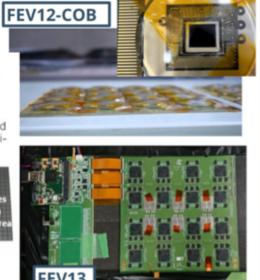
additional

SiW-ECAL technological prototypes

Vincent Boudry, LCWS2019 Sendai

ASU: 12+ years of R&D




Most complex element: electro-mechanical integration

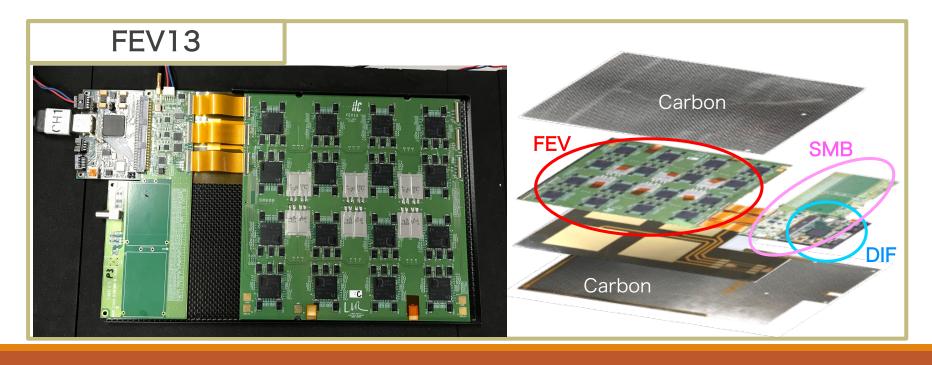
- Distrib / Collect signals from VFE (ASICs),
 Analog & Digital with dyn. range ≥ 7500
- Mechanical placer & holder for Wafers → precision
- Thickness constraints

3 versions working

- with S/N_{Trig} ≥ \sim 12 (for 320µm)

ILD SIW-ECAL Adaptative design | LCWS

Milestone	Date	Object Details		REM
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, lim @ 2000 mips
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips
1 st prototype of a PCB	2010	FEV7	8 SK2	СОВ
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N ~ 14 (HG), no PP retriggers 50–75%
1st run in PP	2013	FEV8-CIP		BGA, PP
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (High Gain) retrigger ~ 50%
1st SLABs	2016	Slab:FEV11	10 units, 320μm	
pre-calo	2017	FEV 11	7 units	S/N ~ 20 (12) _{Trig.} 6– 8 % masked
1 st technological ECAL	2018	10 SLAB: 5 FEV11 320µm 5 FEV13 650*µm Compact stack	SK2 & SK2a (⊃timing)	Improved S/N (1/64 masked ch.) Timing
1 st COB	2019	FEV12-COB	1 wafer, 500µm	S/N ~ 22


Vincent.Boudry@in2p3.fr

Major changes in FEV11→13

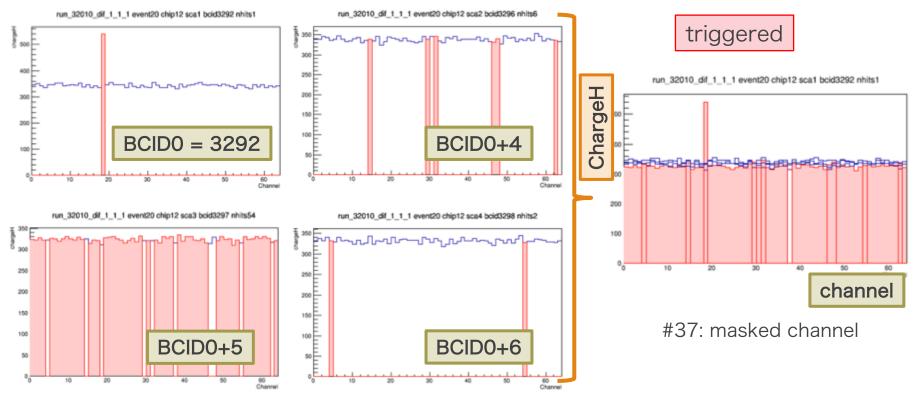
- ➤ ASIC: SKIROC2 → 2A
 - individual threshold control
 - improvement on TDC resolution
- Separation of power layers
 - power supply for analogue and digital
 - improvement on noise level

- Capacitor for Power Pulsing
- 0.4 mm thickness, 40 mF x 6
- Carbon fiber frame/cover
- Smaller SMB footprint

Analogue core: SKIROC2A

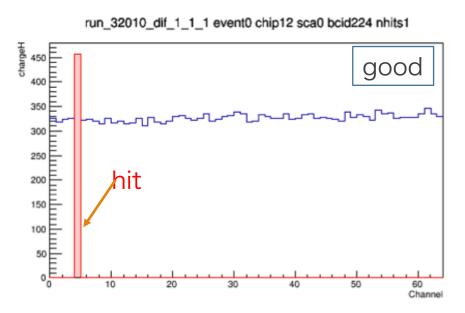
Outputs

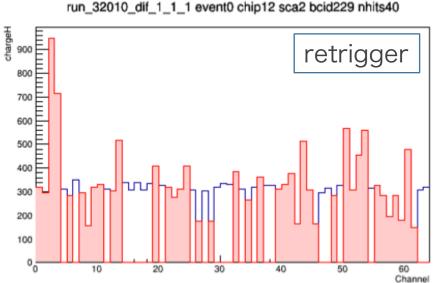
 ADC mode: Charge High(x10) & Low(x1) 15 cells Analog TDC mode: Timing & Charge (High or Low or Auto) memories Time feedback 12 bit-ADC Ramp tagging capacitance 64 channels Sel ADC test? Analog signal (slow control) C2=1.6pF Preamp Slow Sh. G1 R2=100k R1=4k C1=45pF READ Signal W-I out_tdc Depth=15 ssh_G1, ssh G10 out ssh G1 C2=3pF conversion out ssh G10 ~w Slow Sh. G10 R1=22k C1=8pF READ Gain_selection Vth gs TDC_on? (slow control) Gain10 Fast Shaper ~~ 5p.10p. 15p or 20pF HOLD Auto Gain ? Forced Gain ? (slow control) 8-bit Delay Box: vref fs Test Vth_trigge Sel FlagTDCb Ext ? Forced FlagTDCb ? pulse Trigger 4-bit DAC (slow control) out_trigger FLAG TDC fine tuning individual trigger 10-bit DAC 10-bit DAC (from Digital ASIC) threshold adjustment

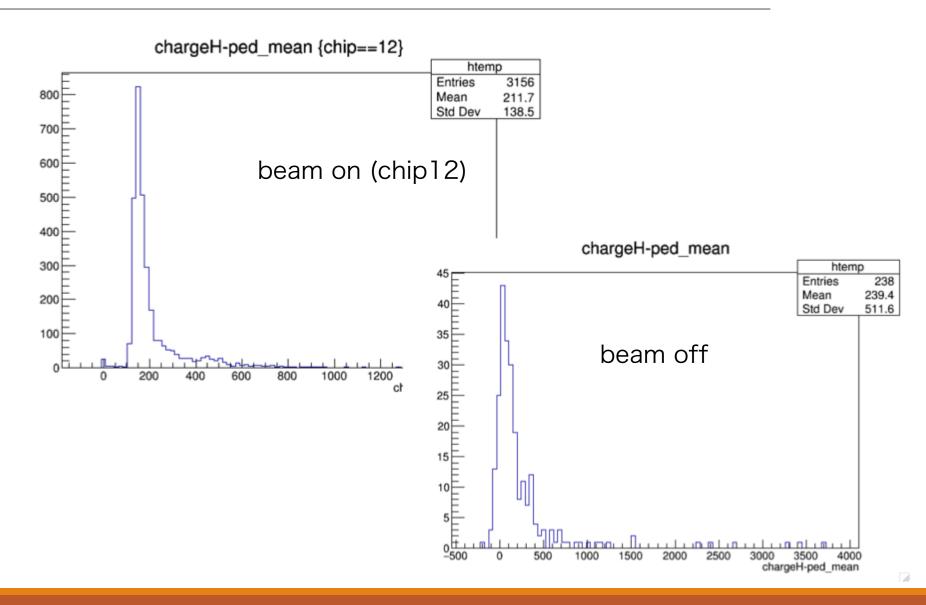

arXiv:1801.02024

Retriggers: Structure

Trigger & Charge


run32010(beam on, w/o W), chip12, FEV13-P1


- Even the channels which charge is around pedestal level are triggered.
- Fast shaper (trigger line) is presumed to be affected by retriggers.


Retriggers

- trigger vs charge
 - Which shaper has problems that cause retriggers?
 - The charges and hits are compared between good/retrigger events.
 - Even the channel which charge is lower than pedestal is triggered.
- > Fast shaper has some problems in retrigger?

Charge of Induction hits

