# e+e--> $\gamma$ h Status



## 5/15

# Dominant Background

Propose: Estimate monte calro fluctuation

- 1. Dominant background with large weight
  - →Calculate fluctuation statistically
- 2. Remaining # of event is 0, but having large weight
  - →Bg suppressed at last cut might be having fluctuation
  - → Calculate upper limit of fluctuation

### 5/15

## Dominant Background(WW, sl)



| Bg               | # of event(2ab-1<br>Luminosity integrated) | Weight |
|------------------|--------------------------------------------|--------|
| 4f, Single W, sl | 105                                        | 13.2   |
| 4f, WW, sl       | 99                                         | 24.8   |
| 4f, Z, I         | 58                                         | 11.7   |

3

### Applied cuts

# of particle>1

# of charged particle >1

|mw1-80.4|<10 GeV or

|mw2-80.4|<9.4 GeV

114<m(2jlv)<135

90<Εγ<98

 $105 < m(\gamma qq) < 190$ 

 $-0.9 < \cos\Theta < 0.9$ 

Emis>10

bmax1<0.77

### 5/15

## Dominant Background(bb)

| Bg         | # of event(2ab-1<br>Luminosity integrated) | Weight |
|------------|--------------------------------------------|--------|
| 2f Z, h    | 19027                                      | 86.5   |
| 4f, WW, sl | 70                                         | 4.66   |
| 4f, WW, h  | 60                                         | 4.67   |

#### mva parameter:

Applied cuts

bmax1>0.77

emis<35

mvabdt > 0.0126

higgs mass

angle between gamma & beam

energy of photon,

angle between 2 jets,

smaller angle between jet & photon