Status on e⁺e⁻ -> γZ process Jet Energy Calibration

Takahiro Mizuno

Recent Progress

1. Method 3 resolution θ , ϕ and E dependence

1.1. RMS90 of the relative difference of the reconstructed jet energy1.2. FWHM of the relative difference of the reconstructed jet energy with an error

2. Consideration of a realistic cut to exclude wrong photon selection events

Analysis Conditions

1. Correct photon selection cut:

For the all plots below (in section 1.), MC level cut "abs(photonthetaAnl-photonthetaMC)<0.01" is imposed.

2. Determination the value of the RMS90 ① Find the bin with the highest entries "bin[i]"

I could not use the bin which includes the mean value of the x-axis "bin[k] = mean"

because mean value is largely shifted due to the overlay (Next Page) (2) Add bins next to the center bin symmetrically "bin[i+1]" and "bin[i-1]"

③ Add bins next to the end bins symmetrically "bin[i+2]" and "bin[i-2]"

(1) Continue until the total number of events gets more than the 90% of the total events (- ∞ to ∞) and calculate RMS

Analysis Conditions

Could not use the bin with the mean value of the x-axis "bin[k] = mean"

because mean value is largely shifted due to the overlay

Analysis Conditions

3. Estimation of the error of FWHM (error) =sqrt((error1)²+(error2)²) %error is estimated asymmetrically

(error1)=(FWHM)'-(FWHM) (FWHM)' is the FWHM when the highest bin height is changed like (lower error): from (the true peak height) + sqrt(the true peak height) and

(upper error): from (the true peak height) - sqrt(the true peak height)

(error2)=(bin width)/sqrt(12.)

1.1. Method 3 Jet 1 energy resolution θ dependence

1.1. Method 3 Jet 1 energy resolution φ dependence

1.1. Method 3 Jet 1 energy resolution E dependence

1.2. Method 3 Jet 1 energy resolution θ dependence

We can see θ
 dependence.

e

Forward JER is worse.

1.2. Method 3 Jet 1 energy resolution φ dependence

1.2. Method 3 Jet 1 energy resolution E dependence

Conclusion

Method 3 resolution has slight θ dependence, no φ dependence and clear E dependence.

JER is worse in the very forward region $|\cos\theta| > 0.95$.

For the lower energy jets below 125 GeV, JER gets worse drastically.

2. Realistic cut to exclude wrong photon selection events

13

Mz vs. Visible Energy (=Ej1+Ej2+Eγ)

mz:j1EAnl+j2EAnl+photonEAnl

2. Realistic cut

"Mz<150 && Visible Energy>440" worked well.

θ difference (rad)

photonthetaAnl-photonthetaMC {mz<150 && j1EAnl+j2EAnl+photonEAnl>440}

2. Realistic cut

The cut conditions are changed slightly and the numbers of events outside " $|\theta\gamma PFO-\theta\gamma MC| > 0.01$ " are compared. "Mz<150 && Visible Energy>440" : 230/156923

Cut	The number of events outside " θγPFO-θγMC >0.01"					
Visible Energy/Mz	150	160	170	180		
440	230/156923	328/164163	434/170207	584/175124		
430	246/162767	350/170175	460/176336	617/180724		
420	259/167490	371/175018	487/181291	648/186377		

2. Realistic cut

The influence of Mz seems larger. I should check wider region and decide the cut conditions.

Cut

The number of events outside "|θγPFO-θγMC| >0.01"

Visible Energy/Mz	150	160	170	180
440	230/156923	328/164163	434/170207	584/175124
430	246/162767	350/170175	460/176336	617/180724
420	259/167490	371/175018	487/181291	648/186377

Thank you for your attention!

253

A. MY

Bata

Bata

AcDonald's