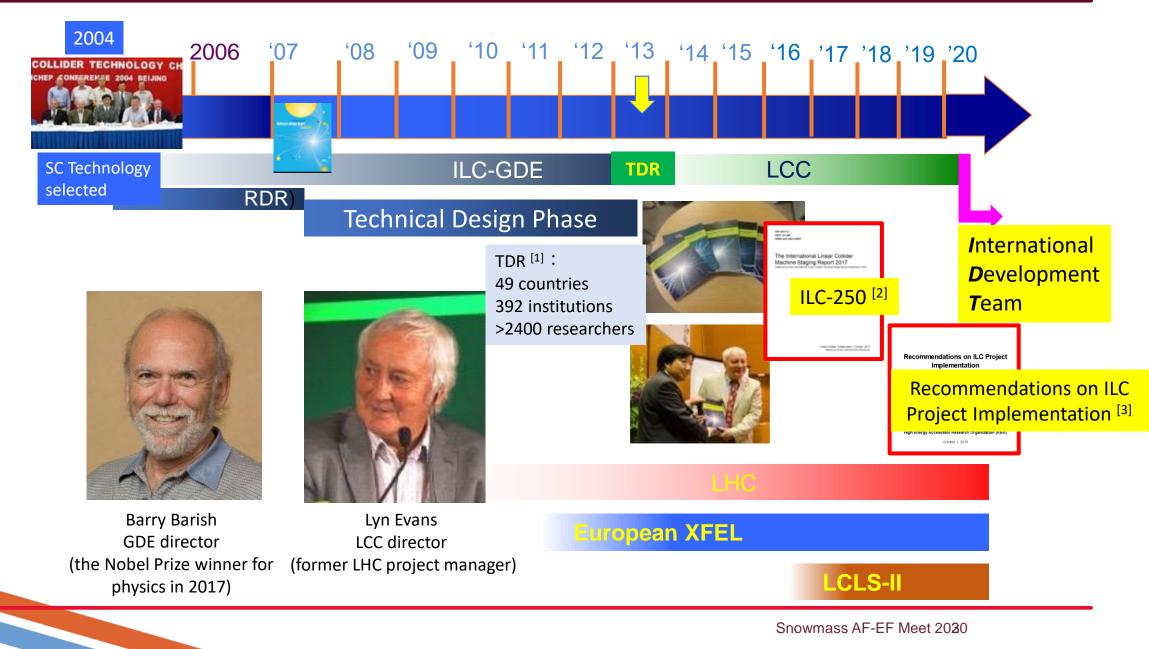
ILC250 accelerator

Speaker: Shin MICHIZONO Linear Collider Collaboration (LCC)/KEK

- ILC250 accelerator overview
- ILC250 beam parameters and possible upgrades
- Main advantages, technical maturity
- Construction cost and schedule
- Summary

24 June 2020


ILC250 accelerator facility

		ltem	Parameters
e- Main Linac	State -	C.M. Energy	250 GeV
		Length	20km
e+ Source		Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻¹
Beam delivery system (BDS)		Repetition	5 Hz
	Physics Detectors	Beam Pulse Period	0.73 ms
e	- Source	Beam Current	5.8 mA (in pulse)
	e+ Main Liinac	Beam size (y) at FF	7.7 nm@250GeV
Damping Ring	al 20.5 km	SRF Cavity G. Q_0	31.5 MV/m (35 MV/m) Q ₀ = 1x10 ¹⁰
Key Technologies			
damping ring few GeV bunch few GeV few GeV	beam Technology extraction & dump final focus		

ilc

ILC R&D organization, TDR

ILC machine parameters

	ILC	electron/positron	ILC250	
2	Beam Energy	GeV	125 (e-) and 125 (e+)	
Ð	Peak Luminosity (10^34)	cm-2 s-1	1.35	* - 0
<u>_</u>	Int. Luminosity	ab-1/yr	0.24*	* 5,0 Iumir
т Ц	Beam dE/E at IP		0.188% (e-), 0.150% (e+)	
	Transv. Beam sizes at IP x/y	nm	515/7.66	
	Rms bunch length /	cm	0.03 (σ _z)	
⁻ acility "Standard Table	beta*	mm	bx*=13mm, by*=0.41mm	
Ŭ	Crossing angle	mrad	14	
Ŋ	Rep./Rev. frequency	Hz	5	
St	Bunch spacing	ns	554	
2	# of IPs		1	
ť	# of bunches		1,312	
÷ <u> </u>	Length/Circumference	km	20.5	
C	Facility site power	MW	111	
L L	Cost (value) range	\$B US	~5 (tunnel and accelerator)	
	Timescale till operations	years	(~1) + 4(prep.) + 9(construction)	

,000-hour operation at peak ninosity

24 June 2020

Snowmass AF-EF Meet 2020

The BDS is designed such that it can be upgraded to a maximum beam energy of 500 GeV; components necessary for 125 GeV beam operation are installed and space for a later upgrade is reserved.

To bring the beams to collision with the necessary nano-meter accuracy requires a continuous compensation of drift and vibration effects. Along the ILC, the pulse length and bunch separation (727 µs and 554 ns, respectively) are large enough to allow corrections between pulses as well as within a bunch train (intratrain feedback).

Finally, the 3.9 GHz crab cavities close to the interaction point are incorporated that rotate the bunches to compensate for the 14 mrad beam crossing angle.

Parameter			Z-pole [4]	Higgs [2]	500 GeV [1]	TeV [1]
Beam size at IP (x)	σ_x^*	μm	1.118	0.515	0.474	0.335
Beam size at IP (y)	σ_y^*	nm	14.56	7.66	5.86	2.66
Luminosity (baseline)	L	10 ³⁴ /cm ² /s	0.205	1.35	1.79	5.11
Luminosity at top 1%	L _{0.01} /L	%	99	74	58	45
Number of beamstrahlung photons	nγ		0.841	1.91	1.82	2.05
Beamstrahlung energy loss	δ _{BS}	%	0.157	2.62	4.5	10.5

Nano-beam is well studied at ATF2 in KEK.

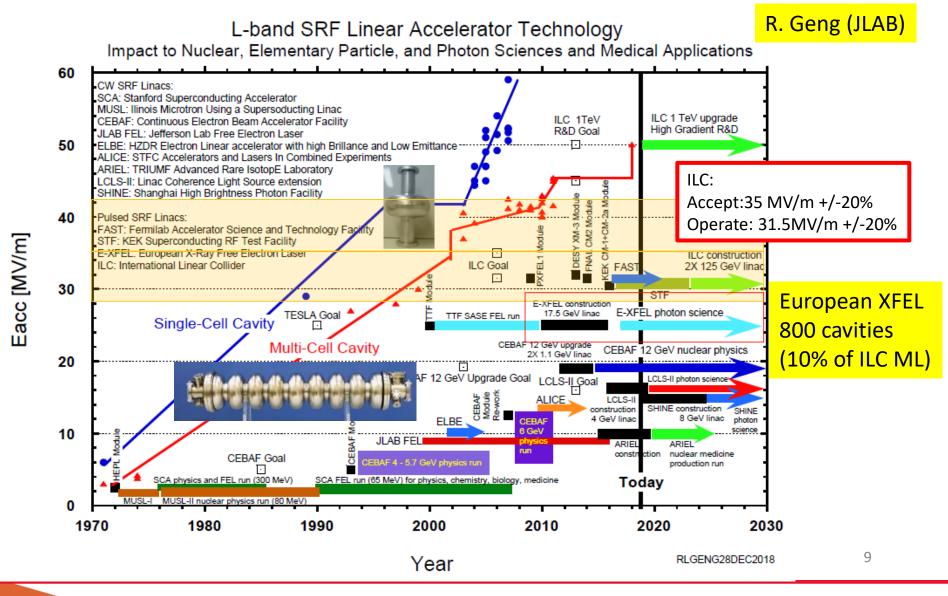
Potential for upgrades

The ILC can be upgraded to higher energy and luminosity.

			Z-Pole [4]			Higgs [2,5]		500GeV [1]		TeV [1]
			Baseline	Lum. Up	Baseline	Lum. Up	L Up.10Hz	Baseline	Lum. Up	case B
Center-of-Mass Energy	Ecm	GeV	91.2	91.2	250	250	250	500	500	1000
Beam Energy	E _{beam}	GeV	45.6	45.6	125	125	125	250	250	500
Collision rate	f _{col}	Hz	3.7	3.7	5	5	10	5	5	4
Pluse interval in electron main linac		ms	135	135	200	200	100	200	200	200
Number of bunches	n _b		1312	2625	1312	2625	2625	1312	2625	2450
Bunch population	Ν	10 ¹⁰	2	2	2	2	2	2	2	1.737
Bunch separation	Δt_b	ns	554	554	554	366	366	554	366	366
Beam current		mA	5.79	5.79	5.79	8.75	8.75	5.79	8.75	7.60
Average beam power at IP (2 beams)	PB	MW	1.42	2.84	5.26	10.5	21.0	10.5	21.0	27.3
RMS bunch length at ML & IP	σz	mm	0.41	0.41	0.30	0.30	0.30	0.30	0.30	0.225
Emittance at IP (x)	γe_{x}^{*}	μm	6.2	6.2	5.0	5.0	5.0	10.0	10.0	10.0
Emittance at IP (y)	γe_y^*	nm	48.5	48.5	35.0	35.0	35.0	35.0	35.0	30.0
Beam size at IP (x)	σ^*_x	μm	1.118	1.118	0.515	0.515	0.515	0.474	0.474	0.335
Beam size at IP (v)	σ^*_v	nm	14.56	14.56	7.66	7.66	7.66	5.86	5.86	2.66
_uminosity	L	10 ³⁴ /cm ² /s	0.205	0.410	1.35	2.70	5.40	1.79	3.60	5.11
Luminosity enhancement factor	H_{D}		2.16	2.16	2.55	2.55	2.55	2.38	2.39	1.93
Luminosity at top 1%	$L_{0.01}/L$	%	99.0	99.0	74	74	74	58	58	45
Number of beamstrahlung photons	n _g		0.841	0.841	1.91	1.91	1.91	1.82	1.82	2.05
Beamstrahlung energy loss	δ _{BS}	%	0.157	0.157	2.62	2.62	2.62	4.5	4.5	10.5
AC power [6]	Psite	MW			111	138	198	173	215	300
Site length	Lsite	km	20.5	20.5	20.5	20.5	20.5	31	31	40

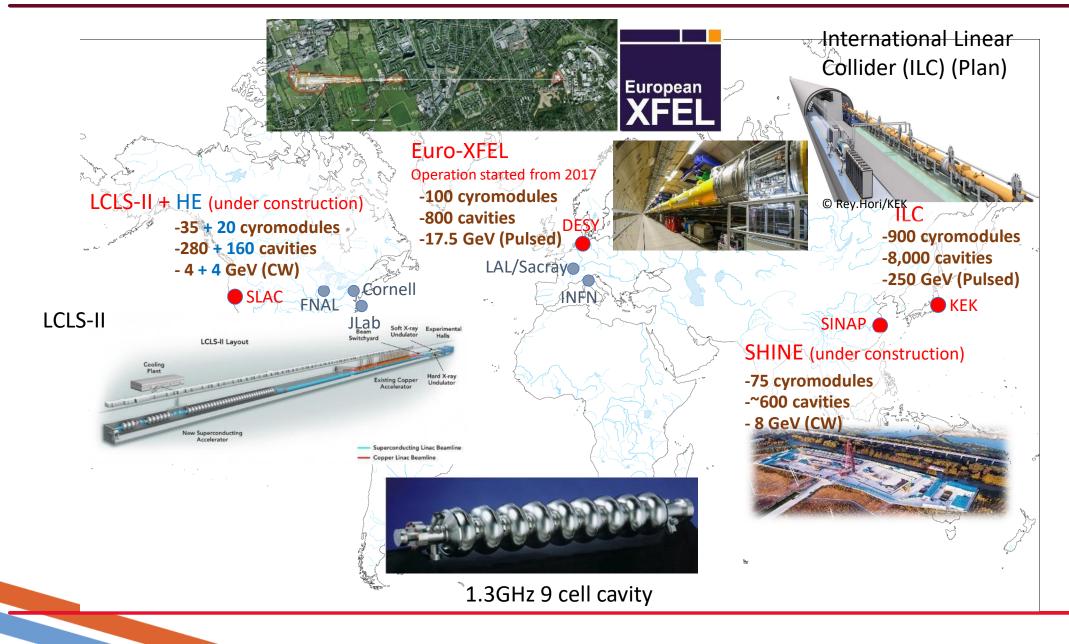
ilc

- A linear accelerator is more advantageous for accelerating electron and/or positron beams to higher energies.
- The spin of the electron and/or positron beam can be maintained during the acceleration and collision. This can help significantly improve measurement precision.
- The efficient power transfer from the AC power source to the beam owing to the small surface resistance of the accelerating structure (cavity) made of Nb.
- Further energy efficiency improvements are considered as part of the of Green ILC concept [8], which aims to establish a sustainable laboratory.


- ILC based on superconducting radiofrequency (SRF) technology started its R&D from 2005 (GDE). Reference Design Report (RDR) was published in 2007 and TDR was published in 2013.
- More than 2,400 researchers contributed to the TDR.
- The SRF technology's maturity was proven by the operation of the European X-ray Free Electron Laser (X-FEL) in Hamburg, where 800 superconducting cavities (1/10 of ILC SRF cavities) were installed.
- In addition to European XFEL, LCLS-II at SLAC, SHINE in Shanghai are under construction.
- Nano-beam technology has been demonstrated at ATF hosted in KEK under international collaboration and almost satisfied the requirements of the ILC.
- Remaining technical preparation (such as mass-production of SRF cavities, positron source, beam dump) can be carried out during the preparation phase before ILC construction. These are listed in "Recommendations on ILC Project Implementation" [7].

ILC: 3 – Shovel-ready

Matured SRF technologies



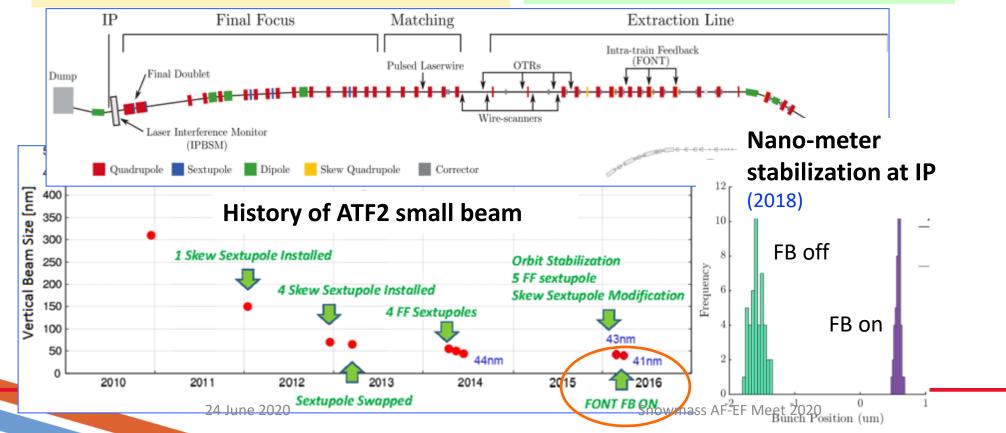
24 June 2020 Snow

Snowmass AF-EF Meet 2020

EAR COLLIDER COLLABORATION Worldwide large scale SRF accelerators

Nano-beam R&D

--ilc


11

Goal 1: Establish the ILC final focus method with same optics and comparable beamline tolerances

- ATF2 Goal : **37** nm \rightarrow ILC **7.7** nm (ILC250)
 - Achieved **41 nm** (2016)

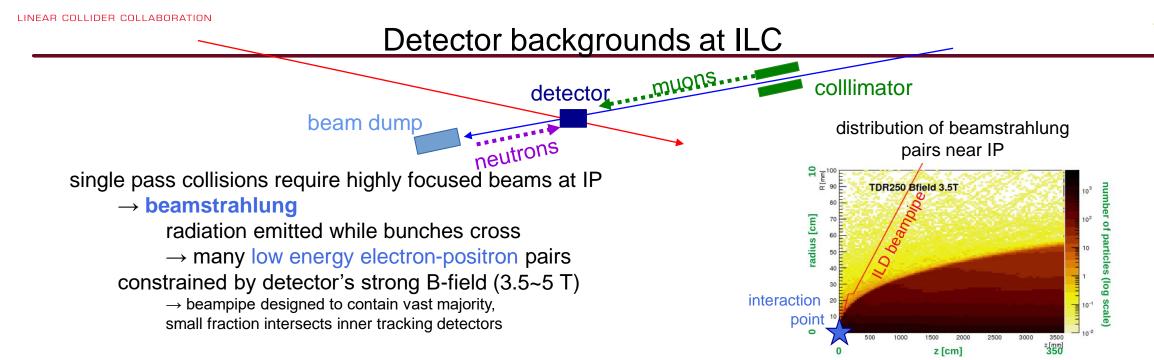
Goal 2: Develop a few nm position stabilization for the ILC collision

- FB latency 133 nsec achieved (target: < 366 nsec)
- positon jitter at IP: 106 → 41 nm
 (2018) (limited by the BPM resolution)

Construction cost

ILC accelerator (including tunnel) construction cost is ~5 B\$ [1,2,7,8].

	TDR: ILC500	ILC250	Conversion to:
	[B ILCU]	[B ILCU]*	[B JPY]
	(Estimated by GDE)	(Estimated by LCC)	(Reported to MEXT/SCJ)
Accelerator Construction: sum	n/a	n/a	635.0 ~ 702.8
Value: sub-sum	7.98	4.78 ~ 5.26	515.2 ~ 583.0
Tunnel & building	1.46	1.01	111.0 ~ 129.0
Accelerator & utility	6.52	3.77 ~ 4.24	404.2 ~ 454.0
Labor: Human Resource	22.9 M person-hours	17.2 M person-hours	119.8
	(13.5 K person-years)	(10.1 K person-years)	
Detector Construction: sum	n/a	n/a	100.5
Value: Detectors (SiD+ILD)	0.315+0.392	0.315+0.392	76.6
Labor: Human Resource (SiD + ILD)	748+1,400 person-years	748+1,400 person-years	23.9
Operation/year (Acc.) : sum	n/a	n/a	36.6 ~ 39.2
Value: Utilities/Maintenance	0.390	0.290 ~ 0.316	29.0 ~ 31.6
Labor: Human Resource	850 FTE	638 FTE	7.6
Others (Acc. Preparation)	n/a	n/a	23.3
Uncertainty	25%	25%	25%
Contingency	10%	10%	10%
Decommission	n/a	n/a	Equiv. to 2-year op. cost


*1 ILCU= 1 US\$ in 2012 prices

Timeline

Now we are at pre-preparation phase (waiting for the preparation phase). Four years preparation and 9 years construction.

	P1	P2	P3	P4	1	2	3	4	5	6	7	8	9	10	Phys. Exp.
Preparation CE/Utility, Survey, Design Acc. Industrialization prep.															
Construction															
Civil Eng.															
Building, Utilities															
Acc. Systems															
Installation															
Commissioning															
Physics Exp.															

collimators used to reduce beam halo & confine synchrotron radiation within beampipe

 \rightarrow high energy muons can be produced,

particularly in final focus system where beam energy is highest
 → muons can reach detector hall (up to a few per bunch-crossing) at linear collider, detector is in line-of-sight of linac
 mitigated by upstream magnetized iron shielding distinctive signature in detector, rather easy to identify
 beams dumped in pressurized water tank a few 100m downstream of IP neutrons can drift back into the detector hall
 → not expected to have a significant effect on the ILC detector

no serious beam gas background expected, even at modest vacuum pressure [10⁻⁶ Pa]

ilr

Summary

- ILC250 is 20 km long e-/e+ collider for the Higgs factory.
- The ILC is upgradable in energy and luminosity.
- International collaborations (GDE, LCC and IDT(International Development Team from summer 2020)) have been leading the R&Ds of the ILC since 2005.
- TDR was published in 2013 and these technologies are matured.
- *Key technologies at the ILC are superconducting rf (SRF) and nano-beam.*
 - SRF technology has been widely adopted at XFELs such as European XFEL.
 - Nano-beam technology has been demonstrated at ATF hosted by KEK
- Construction cost (value) is ~5 B\$ and we assume 4-year preparation and 9-year construction.

References

[1] TDR

https://ilchome.web.cern.ch/publications/ilc-technical-design-report

- https://arxiv.org/ftp/arxiv/papers/1306/1306.6328.pdf
- [2] "The International Linear Collider Machine Staging Report 2017", Nov. 2017:
- https://arxiv.org/ftp/arxiv/papers/1711/1711.00568.pdf
- [3] "Recommendations on ILC Project Implementation"

https://www.kek.jp/en/newsroom/2019/10/02/1000/

https://www2.kek.jp/ilc/en/docs/Recommendations_on_ILC_Project_Implementation.pdf

[4] "Operation of ILC250 at the Z-pole", Jan. 2020: https://arxiv.org/abs/1908.08212

https://agenda.linearcollider.org/event/8389/contributions/45113/attachments/35257/54621/ILC-CR-0019.pdf

[5] "Luminosity Upgrades for ILC", Aug.2013: https://arxiv.org/abs/1308.3726

[6] "Updated power estimate for ILC-250", Dec.2019

https://agenda.linearcollider.org/event/8389/contributions/45111/attachments/35278/54677/ILC-CR-0018.pdf

[7] "Summary of the ILC Advisory Panel's Discussions to Date after Revision" (MEXT, Japan):

http://www.mext.go.jp/component/b_menu/shingi/toushin/__icsFiles/afieldfile/2018/09/20/1409220_2_1.pdf

[8] European Strategy Input and its supporting document

https://ilchome.web.cern.ch/content/ilc-european-strategy-document

https://indico.cern.ch/event/765096/contributions/

https://indico.cern.ch/event/765096/contributions/3295702/

https://arxiv.org/pdf/1903.01629.pdf

[9] "Green ILC project," http://green-ilc.in2p3.fr/home/ (2018).

Thank you for your attention

Snowmass AF-EF Meet 2020