Simulation Concept for Snowmass

J. List June 9, 2020

Introduction

- e⁺e⁻ physics will be a major topic this Snowmass •
- provide simple to use but qualitatively convincing tools! •
- HOW ?

studies for Snowmass are an excellent opportunity to involve new people

J.List, "SImulation Tools for Snowmass" June 9, 2020

Generator-level events

- stdhep format
- $E_{CM} = 250 \text{GeV}^*$, 350 GeV, 500GeV, 1TeV
- "full SM" + selected signals
- $L \sim = E_{CM} * fb^{-1} / GeV :-)$
- Whizard 1.95
- beam energy spectra
- full treatment of spin / polarisation (beams -> tau decays)
- OPAL hadronisation tune
- head-on

* 250 GeV superseeded soon by Whizard 2.8.x, 10 ab-1, LCIO format => stdhep on request

J.List, "SImulation Tools for Snowmass" June 9, 2020

Generator-level events

- stdhep format
- $E_{CM} = 250 \text{GeV}^*, 350 \text{GeV},$ 500GeV, 1TeV
- "full SM" + selected signals
- $L \sim = E_{CM} * fb^{-1} / GeV :-)$
- Whizard 1.95
- beam energy spectra
- full treatment of spin / polarisation (beams -> tau decays)
- OPAL hadronisation tune
- head-on

* 250 GeV superseeded soon by Whizard 2.8.x, 10 ab-1, LCIO format => stdhep on request

Delphes card for "generic (I)LC detector"

- describing a particle flow detector in Delphes is a challenge
- but widely used in pp community
- simple Delphes card from SiD (C.Potter) => performance factors 2...

10 away from full simulation!

- very involved CLICdp setup (P.Roloff et al)
- ILD is working on a reasonable description

Generator-level events

- stdhep format
- E_{CM} = 250GeV*, 350GeV, 500GeV, 1TeV
- "full SM" + selected signals
- $L \sim = E_{CM} * fb^{-1} / GeV :-)$
- Whizard 1.95
- beam energy spectra
- full treatment of spin / polarisation (beams -> tau decays)
- OPAL hadronisation tune
- head-on

* 250 GeV superseeded soon by Whizard 2.8.x, 10 ab-1, LCIO format => stdhep on request

Delphes card for "generic (I)LC detector"

- describing a particle flow detector in Delphes is a challenge
- but widely used in pp community
- simple Delphes card from SiD (C.Potter)
 => performance factors 2...

10 away from full simulation!

- very involved CLICdp setup (P.Roloff et al)
- ILD is working on a reasonable description

Simulation a grande vitesse (SGV)

- as fast as Delphes
- very, very close to full simulation!
- battle-proven in many, many ILC studies
- not known in pp community

Generator-level events

- stdhep format
- E_{CM} = 250GeV*, 350GeV, 500GeV, 1TeV
- "full SM" + selected signals
- $L \sim = E_{CM} * fb^{-1} / GeV :-)$
- Whizard 1.95
- beam energy spectra
- full treatment of spin / polarisation (beams -> tau decays)
- OPAL hadronisation tune
- head-on

* 250 GeV superseeded soon by Whizard 2.8.x, 10 ab-1, LCIO format => stdhep on request

Delphes card for "generic (I)LC detector"

- describing a particle flow detector in Delphes is a challenge
- but widely used in pp community
- simple Delphes card from SiD (C.Potter)
 => performance factors 2...

10 away from full simulation!

- very involved CLICdp setup (P.Roloff et al)
- ILD is working on a reasonable description

Simulation a grande vitesse (SGV)

- as fast as Delphes
- very, very close to full simulation!
- battle-proven in many, many ILC studies
- not known in pp community

full, Geant4-based simulation & reconstruction

- the full level of detail
- profiting directly from 20 years of development and experience
- requires "joining" ILD / SiD

Generator-level events

- stdhep format
- E_{CM} = 250GeV*, 350GeV, 500GeV, 1TeV
- "full SM" + selected signals
- $L \sim = E_{CM} * fb^{-1} / GeV :-)$
- Whizard 1.95
- beam energy spectra
- full treatment of spin / polarisation (beams -> tau decays)
- OPAL hadronisation tune
- head-on

* 250 GeV superseeded soon by Whizard 2.8.x, 10 ab-1, LCIO format => stdhep on request

Delphes card for "generic (I)LC detector"

- describing a particle flow detector in Delphes is a challenge
- but widely used in pp community
- simple Delphes card from SiD (C.Potter)
 => performance factors 2...

10 away from full simulation!

- very involved CLICdp setup (P.Roloff et al)
- ILD is working on a reasonable description

Simulation a grande vitesse (SGV)

- as fast as Delphes
- very, very close to full simulation!
- battle-proven in many, many ILC studies
- not known in pp community

full, Geant4-based simulation & reconstruction

- the full level of detail
- profiting directly from 20 years of development and experience
- requires "joining" ILD / SiD

miniDST

- brand-new initiave within ILD
- define a reduced, high-level data format (isolated leptons & photons, jets, particle flow objects, MCtruth)
- readable in root (loading one shared library), no Marlin etc required
- filled from 1) SGV, 2) full simulation, and, possibly 3) Delphes

Generator-level event samples

- **DBD-samples (Whizard 1.95):**
 - readily available in stdhep format on the grid (ilc-vo) •
 - => copy to some Snowmass space for access without ilc-vo • *membership?*
- new 250 GeV samples (Whizard 2.8.x), new beam spectrum: •
 - upcoming, but by default loio format only •
 - provided!
- additional samples (eg BSM signals).

=> upon request: write also sthep, but then disk space needs to be

LCC Generator Group is available for advice and support for generating

Delphes

- will provide a Delphes card describing "a generic ILC detector"
- avoid Delphes-based "SiD vs ILD" comparisons
- existing SiD card 2...10x worse than ILD full simulation

 no central processing of events with Delphes planned on our side

Delphes

- will provide a Delphes card describing "a generic ILC detector"
- avoid Delphes-based "SiD vs ILD" comparisons
- existing SiD card 2...10x worse than ILD full simulation

no central processing of events with Delphes planned on our side

DELPHES task force

Goal:

- Include forward detector description →LumiCal and LHCAL included in particle flow reconstruction Increase of the angular coverage for exotic studies...
- Verify/improve description of calorimeter segmentation
- Verify/improve "granularity" of response description →Better modeling of single-particle reconstruction
- Improve description of b- and c- tagging →Also taking into account angular and energy dependence
- More options for jet clustering →Choice between inclusive and exclusive clustering with different number of jets

Dedicated repository created: https://github.com/ILDAnaSoft/ILDDelphes

prepare the updated ILC detector model for Snowmass studies.

Key developments planned:

S(-)/

- **the** battle-proven ILC fast simulation tool
- ready to be used at anytime by anybody:

svn export https://svnsrv.desy.de/public/sgv/tags/SGV-3.0rc1/ SGV-3.0rc1/

Then

bash install

- producing either LCIO-DST or direct analysis / root tree writing ullet
- •
- plan for Snowmass: provide miniDST filled from SGV => storage outside of ilc-vo to be provided by Snowmass

see also: https://agenda.linearcollider.org/event/8525/contributions/ 45543/attachments/35501/55052/berggren-ildphone-12may20.pdf

J.List, "SImulation Tools for Snowmass" June 9, 2020

Full Simulation

- the ultimate level of realism
- requires getting in contact with SiD / ILD
 - both Detector Concepts welcome newcomers! •
 - ILD offers a "guest membership" costs nothing, apart from following ILD publication rules
- ulletreconstruction - somewhat later than SGV-miniDST, though. => analyses can start with SGV-miniDST, option to move to ILD-miniDST if deeper interest

=> again storage outside of ilc-vo to be clarified / provided by **Snowmass?** => SiD version ?

plan for Snowmass: provide miniDST filled from ILD full simulation &

Summary

- available already:
 - •
 - **TOOL: SGV fast simulation** •
- in preparation, hopefully in place by ~mid July: •
 - **DATA: SGV-miniDST of the above generator-level samples** •
 - **TOOL: Delphes card for a "generic ILC detector"** •
- in preparation, coming during ~fall:
 - DATA: ILD-miniDST of new 250 GeV samples, other energies tbd
 - • TOOL: miniDST output for Delphes ?
- data with "ILD" in the name will require at least "guest membership"

DATA: generator-level event samples 250 GeV, 350 GeV, 500 GeV, 1 TeV

J.List, "SImulation Tools for Snowmass" June 9, 2020

Backup

- arXiv:1602.07748 (SiD Delphes card by Chris Potter)
- compared to full simulation performance as in
 - Sid DBD •
 - ILD IDR ullet

Parameter	Value			
DertialeDropogator				
Radius	2 402m			
Half ongth	2.495m 2.018m			
D-	5.0T			
DZ The altine Effect	0.0 1			
TrackingEfficiency				
ChargedHadron TrackingEfficiency	see DBD Figure 3.5			
ElectronTrackingEfficiency	see DBD Figure 3.5			
Muon'IrackingEfficiency	see DBD Figure 3.5			
MomentumSme	earing			
ChargedHadronMomentumSmearing	see DBD Figure 3.9			
MuonMomentumSmearing	see DBD Figure 3.9			
ElectronEnergySmearing	see DBD Figure 3.9			
ECal,HCa	1			
ECal ResolutionFormula	$\sigma_E/E = 0.010 \oplus 0.170/\sqrt{E}$			
HCal ResolutionFormula	$\sigma_E/E = 0.094 \oplus 0.559/\sqrt{E}$			
Photon,Electron,Muo	n Efficiency			
PhotonEfficiency	see DBD Figure 10.6			
ElectronEfficiency	see DBD Figure 10.7			
MuonEfficiency	see DBD Figure 10.8			
FastJetFind	er			
JetAlgorithm	$6 [antik_t]$			
ParameterR	1.0			
InputArray	EFlowMerger/eflow			
BTagging				
EfficiencyFormula 0	0.007			
EfficiencyFormula 4	0.03			
EfficiencyFormula 5	0.7			
TauTagging				
EfficiencyFormula 0	0.001			
EfficiencyFormula 15	0.4			
-				

ILD IDR

 $\sigma(E)/E \sim 17\%/\sqrt{(E/\text{GeV})}$ $\sigma(E)/E \sim 50\%/\sqrt{(E/\text{GeV})}$

Tracking efficiency

)	

Tracking efficiency

)	

Tracking efficiency

1/pt resolution vs p

Momentum Resolution

J.List, "SImulation Tools for Snowmass" June 9, 2020

1/pt resolution vs p

1/pt resolution vs p

SGV: How tracking works

SGV is a machine to calculate covariance matrices Tracking: Follow track-helix through the detector.

- Calculate cov. mat. at perigee, including material, measurement errors and extrapolation. NB: this is
 - exactly what Your Kalman filter does!
- Smear perigee parameters (Choleski decomposition: takes all correlations into account)
- Helix *parameters* exactly calculated, errors with one approximation: helix moved to (0,0,0) for this.

J.List, "SImulation Tools for Snowmass" June 9, 2020

SGV: How tracking works

SGV is a machine to calculate covariance matrices Tracking: Follow track-helix through the detector.

exactly what Y 0 € 10⁻⁴ t does! • Smear perige (Choleski dec takes all corre account) • Helix paramet 10 calculated, eri approximation: helix moved to (0,0,0) for this. J.List, "SImulation Tools for Snowmass" June 9, 2020

Calculate cov. including mate measurement extrapolation.

SGV - Total Energy and JER

b-tag

J.List, "SImulation Tools for Snowmass" June 9, 2020

b-tag

b-tag

SGV - Flavour Tag. (!)

Zhh at 1 TeV:

