Status on e⁺e⁻ -> γZ process Jet Energy Calibration

Takahiro Mizuno

250 GeV DBD analysis

- In order to perform 250 GeV analysis, we decided to use DBD samples instead of current using samples until new sample is validated.
- To make things clear, overlay removal using MCTruth link is implemented.
- Distribution of various observables are checked.
- Try to increase the number of samples (not yet done).

Photon energy & Mz distribution

photonEMC:mzgen

Mz GeV

For some reason, Method 3 is not working. 4

I am looking into the bug in the Method 3.

Photon energy bias in DBD

photonEAnl-photonEMC

Photon energy bias in DBD

Eγ GeV

Using "Smeared MCtruth Εγ" as input in Method 2 and 2'.

"EγMC+0.17*sqrt(EγMC)*gR andom->Gaus() +0.01*EγMC*gRandom->Gaus();

The positive shift disappeared.

Effects of overlay

J1 E resolution by Method 3

With overlay

Without overlay

It became slightly better if we remove the overlay. Especially, positive region tail is mitigated.

Removing tail

J1 E resolution by Method 3 (Normalized)

Removing tail

J1 E resolution by Method 3 (Normalized)

250 GeV DBD analysis

- In order to perform 250 GeV analysis, we decided to use DBD samples instead of current using samples until new sample is validated.
- To make things clear, overlay removal using MCTruth link is implemented.
- Distribution of various observables are checked.
- Try to increase the number of samples (not yet done).

Backup

Jet Energy Reconstruction Method

Basic ideas: apply momentum conservation Inputs: measured jet directions and mass and photon directions

Method 1: Use 3-momentum conservation and ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma})$

Method 2': Use transverse momentum conservation and ignore ISR /Use measured P_{γ} as input Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, \mathbf{P}_{\gamma})$ -> Determine (P_{J1}, P_{J2})

Method 2: Use 4-momentum conservation and consider ISR /Use measured P_{γ} as input Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{ISR})$

Method 3: Use 4-momentum conservation and consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Reconstruction Method

Based on 4-momentum conservation

• Several reconstruction methods (Method 1, 2', 2, and 3) are considered.

 ϕ : azimuthal angle

Reconstruction Method

Method 2': Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine (P_{J1}, P_{J2})

 $\left\{ \begin{array}{ll} \left(\begin{array}{cc} sin\theta_{J1}cos\phi_{J1} & sin\theta_{J2}cos\phi_{J2} \\ sin\theta_{J1}sin\phi_{J1} & sin\theta_{J2}sin\phi_{J2} \end{array} \right) \begin{pmatrix} P_{J1} \\ P_{J2} \end{pmatrix} = \begin{pmatrix} 500sin\alpha - sin\theta_{\gamma}cos\phi_{\gamma}P_{\gamma} \\ -sin\theta_{\gamma}sin\phi_{\gamma}P_{\gamma} \end{pmatrix} \right.$

Method 2: Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{ISR})$

2 solutions for each sign of P_{ISR} -> choose the best answer which satisfies **1** better

Reconstruction Method

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

The first equation (1) becomes a quartic equation of $|P_{ISR}|$.

- -> 8 Possible Solutions!
- (2 direction options of ISR × 4 solutions for each quartic equation)

Choose the solution with (i) real and positive value (ii) solved P_{γ} closest to the measured P_{γ}