

Delphes task group – status report

Paweł Sopicki, Aleksander Filip Żarnecki University of Warsaw

17 June 2020

Motivation (as presented on June 9)

Goal: prepare the updated ILC detector model for Snowmass studies.

Key developments planned:

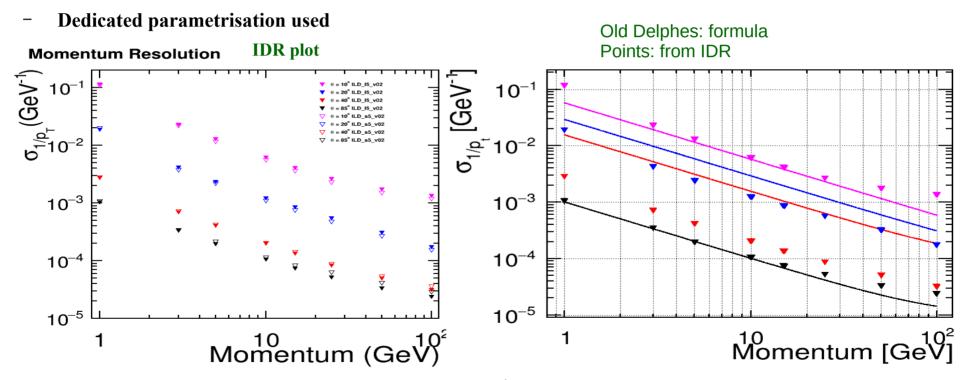
Include forward detector description

LumiCal and LHCAL included in particle flow reconstruction

Verify/improve description of calorimeter segmentation Verify/improve "granularity" of response description Better modeling of single-particle reconstruction

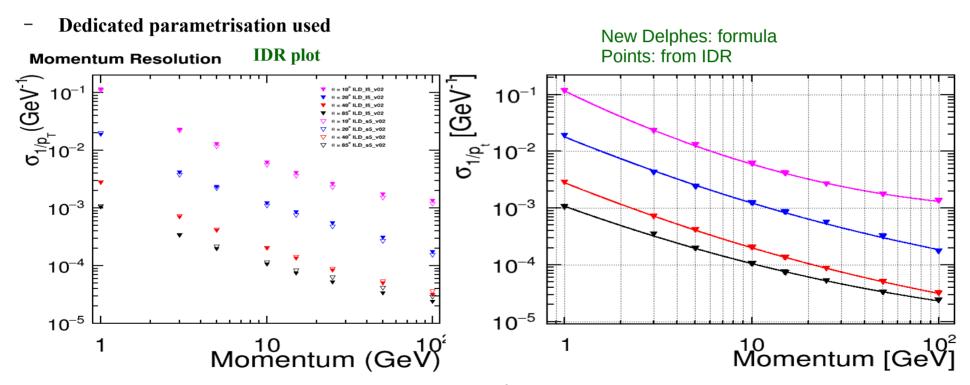
Improve description of b- and c- tagging

Waiting for input

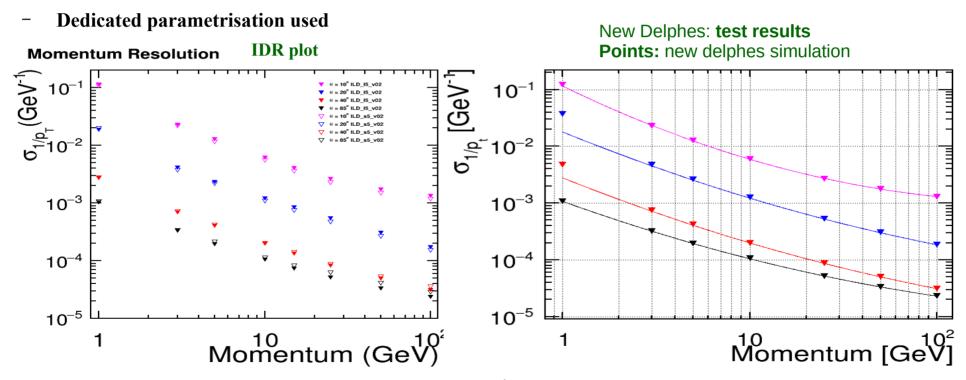

Done!

More options for jet clustering

Pending!



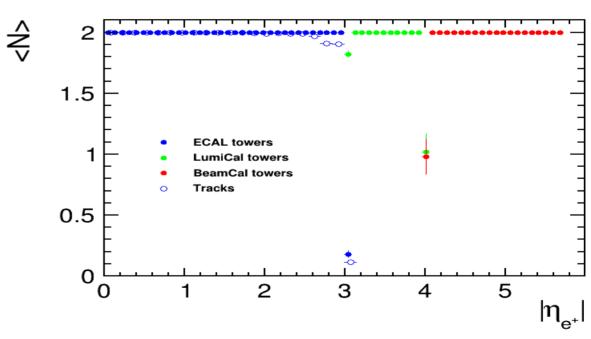
Track momentum resolution taken from IDR



Track momentum resolution taken from IDR

Track momentum resolution taken from IDR

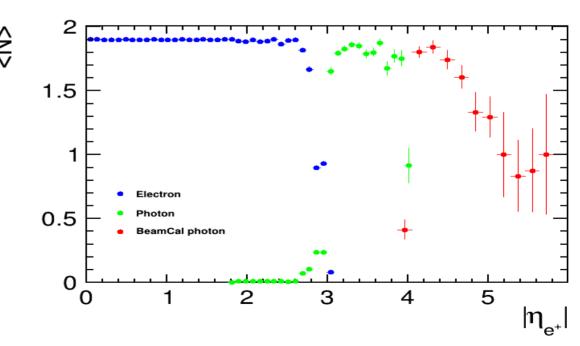
- Track momentum resolution taken from IDR
 - Smooth description of angular dependance
 - Tracking acceptance extended to $|\eta| = 3$ (95% efficiency assumed for high η and high pT)


Old Delphes: 2-bins New Delphes: formula p_{trk} [GeV] 100 100 GeV 100 GeV 80 60 50 GeV 50 GeV -0.5-0.50.5 0.5 0 $\cos(\theta_{\mu^+})$ $\cos(\theta_{u^+})$

- LumiCal+LHCAL+BeamCal
 - Only LumiCal and LHCAL included in Particle Flow

Number of reconstructed objects for $Z \rightarrow e^+e^-$ samples

(electron energy of 25, 50 and 100 GeV mixed)

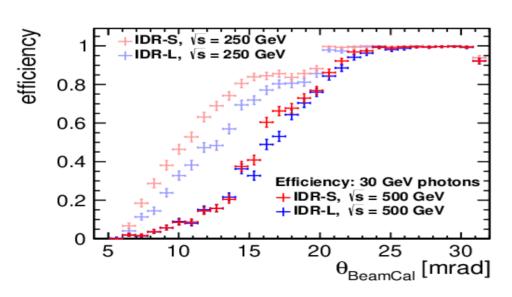


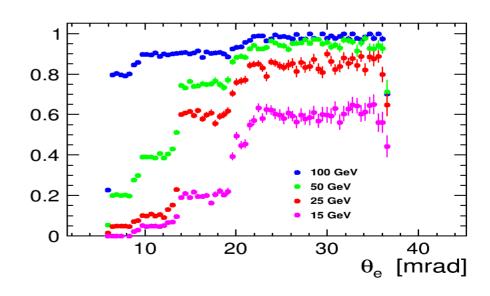
- LumiCal+LHCAL+BeamCal
 - Only LumiCal and LHCAL included in Particle Flow

Number of reconstructed objects for $Z \rightarrow e^+e^-$ samples

(electron energy of 25, 50 and 100 GeV mixed)

High level: including efficiency and isolation cuts

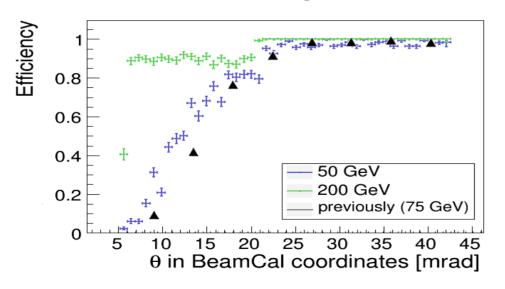


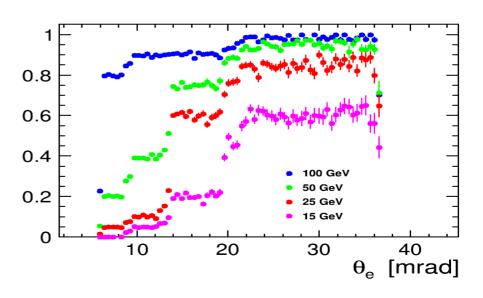


BeamCal efficiency

- Based on IDR figure 8.8a and Moritz Hebermehl PhD Thesis Figure 4.10: 4 energy*4η bins

IDR 8.8a

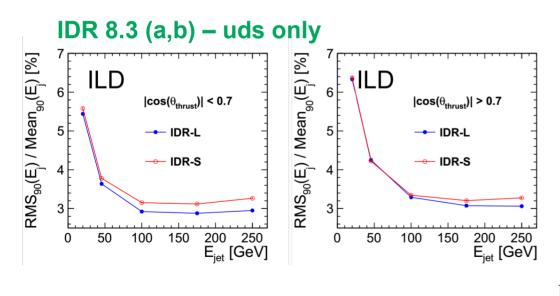




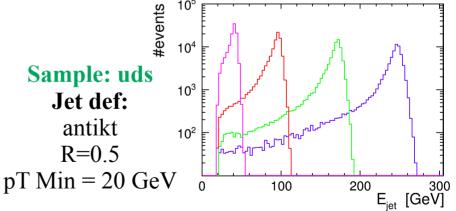
BeamCal efficiency

- Based on IDR figure 8.8a and Moritz Hebermehl PhD Thesis Figure 4.10: 4 energy*4η bins

M. Hebermehl Fig 4.10



Jets


So far only basic jet definition

JER (rms90/mean90) [jetE / %] :

45 GeV 10.0% 100 GeV 8.3% |cos(theta)|<0.7 175 GeV 5.3%

250 GeV 4.6%

Partickle tracking conditions

- Assumed: ILD magnetics field and tracking volume size

Tracking coverage and efficiency for charged particles

- Tracking efficiency as given in the ILD IDR (Figure 8.2)
- Tracking extended up to eta = 3: can point to LHCAL, educated guess

Tracking resolution (momentum smearing)

- Parametrisation of ILD IDR results (Figure 8.1a)

• Calorimeter acceptance and tower structure

ECAL up to 3.0

LumiCal 3.0 - 4.0

BeamCal 4.0 - 5.8

HCAL up to 2.8

LHCAL 2.8 - 3.8

ECAL subranges: 0.0-1.1-2.0-2.5-3.0

HCAL subranges: 0.0-1.1-2.0-2.5-2.8

Two separte flows prepared:

- main calorimeters only: ECAL+HCAL
- all calorimeters

Response thresholds for forward calorimeter towers currently set to 1 GeV

Calorimeter resolution for single particles

Resolution formula from Daniel

ECAL/LumiCal: sqrt(energy^2*0.01^2 + energy*0.17^2)

HCAL/LHCAL: $sqrt(energy^2*0.017^2 + energy^3.45^2)$

Assumed BeamCal resolution (taken from FCAL simulation):

(abs(eta) >
$$4.0 \&\&$$
 abs(eta) <= 4.8) * sqrt(energy^2* 0.02^2 + energy* 0.30^2) + (abs(eta) > $4.8 \&\&$ abs(eta) <= 5.8) * sqrt(energy^2* 0.03^2 + energy* 0.45^2)

- BeamCal response to hadrons: should it be included?

- Efficiency for particle reconstruction (on particle flow level)
 - Conservative estimate from Daniel

For photons:

(energy > 0.5) * (abs(eta)
$$\leq$$
 3.0) * (0.95) + (energy > 1.0) * (abs(eta) > 3.0 && abs(eta) \leq 4.0) * (0.90)

For electrons:

$$(abs(eta) \le 3.0)$$
 * (0.95) + $(abs(eta) \ge 3.0 && abs(eta) \le 4.0)$ * (0.90)

For muons: 0.95 (fixed)

- BeamCal reconstruction efficiency taken from plots

IDR Figure 8.8a and Moritz Hebermehl PhD Thesis Figure 4.10 in 4 x 4 energy x eta bins

• Isolation requirements

- Analysis dependent. Old settings used so far...

• Clustering algorithm

- Analysis dependent. Old settings kept for now. More options should be added
- Jet pT threshold at 20 GeV: too high?

• Falvour tagging efficiencies and mistagging probabilities

- Waiting for input from Ryo and Tomohiko
- Q: bit configuration? Add a bit for 'true' tag?

Tau-jet tagging

- Not a priority. Postponed
 - Some estimates can be pesented by Shin-Ichi

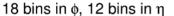
Summary & Outlook

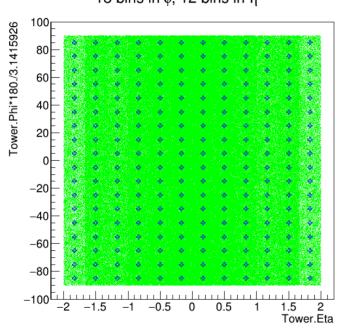
Dedicated repository created: https://github.com/ILDAnaSoft/ILDDelphes

Still in need of some inputs – b/c-tagging

Decision needed: number and definitions of jets clustering

Main code structure ready for more detailed tests and improvements


Some plots



backups

Energy deposits in ECAL towers

- Sample: electrons only
- Tower center smearing
 - Off: crosses
 - On: dots