Hadron Production in Photon-Photon Processes at the ILC and BSM signatures with small mass differences

ILD Analysis Software Meeting

Swathi Sasikumar, Jenny List, Mikael Berggren 17 June 2020, DESY

Introduction

> Naturalness requires light higgsinos at electroweak scale

$$m_Z^2 = 2\frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - 2\mu^2$$

> Natural region is μ =100-300 GeV - accessible for ILC500 and some at 250 GeV

[arXiv:1212.2655, arXiv:1404.7510]

> Light higgsinos - $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ nearly mass degenerate

Courtesy: T. Tanabe

Benchmark Scenario

- > Light higgsinos $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^{\pm}$ can be discovered/excluded at ILC <u>DESY-THESIS-2016-001</u>
- > The case was studied at two benchmark scenarios

$$\Delta M(\tilde{X}_{1}^{\pm}, \tilde{X}_{1}^{0}) = 770 \text{ MeV} => \text{dM}770$$

$$\Delta M(\tilde{X}_1^{\pm}, \tilde{X}_1^{0}) = 1.6 \text{ GeV} => \text{dM}1600$$

- > Charginos decay hadronically and leptonically
- > Studied without the inclusion of
 - $\gamma \gamma \rightarrow \text{low p}_T \text{ overlay}$
 - Pair background

Impact of $\gamma\gamma \rightarrow low p_T$ hadron background

- > $\gamma\gamma$ \rightarrow low pt hadron backgrounds is a challenge for some specific cases e.g low ΔM higgsino
- > Visible decay products of higgsinos very soft and thus similar to $\gamma\gamma \rightarrow low p_T$ hadron backgrounds
- Analysis for higgsinos still an exception to k_T algorithm method -
 - the low pt visible decay products misidentified as $\gamma\gamma$ overlay in exclusive mode and discarded
- > Important to study the effect of overlay on the higgsino events

Possible methods to remove $\gamma\gamma \rightarrow low pT$ hadrons

> Method:

- Displacement of vertices in z direction
- Vertices of $\gamma\gamma$ overlay events displaced from that of signal vertices
- Identifying the tracks coming from such vertices and removing them would be an effective method
- This method cannot be used for purely neutral events like $\gamma \gamma \to \pi^0 \pi^0$

Track grouping algorithm

- >Standard vertex finding algorithm reconstructs one single primary vertex for each event
- >More complex algorithm to group the tracks to find different vertices
- > Grouping based on difference in z0 significance
- >New track grouping algorithm which groups the closest tracks separating signal and $\gamma\gamma \rightarrow$ low pt hadron tracks
- > Results from dM1600 focused in this talk

Higgino Analysis

- > A full analysis on ΔM higgsinos performed with the inclusion of $\gamma\gamma \to \text{low pT}$ hadron events
- > Tracks from signal and overlay are grouped separately using the track grouping algorithm
- > A comparison of studies with Hale Serts's analysis is made
- > Event selection cuts are adapted from Hale's analysis

Cuts for Hale Sert's Analysis

- > Events with BeamCal activity vetoed
- > Number of tracks < 15
- > ISR photon required
- > Particles should be 20 degrees away (|Costheta| < 0.9395)
- > Energy of every particle in an event < 5
- Missing Energy > 300 GeV
- > |Costheta miss| > 0.993
- > Semi-leptonic decay channel
- > Boost energy for pions in the chargino rest frame
- > Acoplanarity between the decay products

Precuts for the track grouping algorithm

- >Events having BeamCal clusters with energy > 150 GeV vetoed
- >Number of tracks chosen for the track grouping algorithm < 13
- >Every event should have an ISR photon

Semi-leptonic selection for charginos

Truth - level

pi/lep	1 trk grp	2 trk grp	3 trk grp	More trk grp
1 trk grp	8.5	1.3	0.44	0.4
2 trk grp	1.6	0.6	0.35	0.24
3 trk grp	0.6	0.2	0.13	0.20
more trk grp	0.35	0.37	0.11	0.17

Reco - level

- Total events
- two tracks 5893 64%
- three tracks 1594 17%
- four track 721 8%
- one track 958 11%

$\widetilde{\chi}_1^+$ decay mode	BR(dM1600)
$e \nu \widetilde{\chi}^0_1$	17.3%
$\mu u\widetilde{\chi}_1^0$	16.6%
$\pi^+\widetilde{\chi}^0_1$	16.5%
$\pi^+\pi^0\widetilde{\chi}^0_1$	28.5%

Both tracks in one group - 84% 2trk =61%, 3trk= 15%, 4trk = 5%, more = 3.2%

Semi-lep selection for tau events

Truth - level

pi/lep	1 trk grp	2 trk grp	3 trk grp	More trk grp
1 trk grp	42	4	3.1	0.7
2 trk grp	4.1	2.3	0.6	0.7
3 trk grp	2.4	0.16	0.12	0.2
more trk grp	0.5	0.30	0	0.17

Reco - level

- Total events
- two tracks 5.87489e6 23 %
- three tracks 5.08775e6- 20%
- four track 1.1768e7 45%
- One track 3.11243e6 12%

Both tracks in one group - 38.3, 2trk - 29, 3trk = 5.2, 4trk = 3, more = 1.2

Semi-lep selection efficiency

Semi-leptonic selection

- >Without the inclusion of $\gamma\gamma$ \rightarrow low pT hadron overlay, no fake semi-leptonic events are found
- > With $\gamma\gamma\to {\rm low}$ pT hadron overlay, leptons from di-leptonic events along with pions from overlay imitate semi-leptonic signatures
- >With semi-leptonic selection Hale vetoed 96% of SM background
- >Presence of fake semi-leptonic signatures makes the cut less effective 59 % SM background vetoed in Swathi's analysis
- >Important to have other cuts that suppress SM background more efficiently

Cos theta_{soft} for the particles

- > |Costheta| < 0.9395 for all particles
- > $\gamma\gamma\to {\rm low}~{\rm pT}$ hadron overlay majority events with particles having small angle
- > Variation in the original cut:
 - Semi-lep events -|Costheta| < 0.9395
 only for semi-lep candidates
 - Rest events |Costheta| < 0.9395 for all</p>

	Sig [%]	SM [%]
Swathi	37	90
Hale	28	72

Energy of the particles

- >Energy of all particles in event < 5 GeV
- > $\gamma\gamma$ \rightarrow low pT hadron overlay, many events with particles with energy > 5 GeV
- >Important to have a cut removes majority of background
- >Alterations in original cut:
 - Energy_{SL}+Energy_{other_tracks} < 5 GeV</p>
 - Energy_{SL}+Energy_{neutral} < 5 GeV</p>

Energy cuts

Energy of the particles

- >Energy of all particles in event < 5 GeV
- > $\gamma\gamma$ \rightarrow low pT hadron overlay, many events with particles with energy > 5 GeV
- >Important to have a cut removes majority of background
- >Alterations in original cut:
 - Energy_{SL}+Energy_{other_tracks} < 5 GeV</p>
 - Energy_{SL}+Energy_{neutral} < 5 GeV</p>

	Sig [%]	SM [%]
Swathi	29	97
Hale	4	81

Boost energy of pion

- >Boost energy of pions in chargino pair frame < 3 GeV
- >Chargino decay for dM1600 π^{\pm} and π^{0} with BR 28 %
- >Event selection based on charged tracks
- >Important to have methods to find right photons decayed from π^0

$\widetilde{\chi}_1^+$ decay mode	BR(dM1600)
$e\nu\widetilde{\chi}^0_1$	17.3%
$\mu \nu \widetilde{\chi}_1^0$	16.6%
$\pi^+\widetilde{\chi}^0_1$	16.5%
$\pi^+\pi^0\widetilde{\chi}^0_1$	28.5%

Boost energy of pion

- >Boost energy of pions in chargino pair frame < 3 GeV
- >Chargino decay for dM1600 π^{\pm} and π^{0} with BR 28 %
- >Boost energy of channel where chargino decays to π^{\pm} considered
- >0.3 GeV < Boost Energy < 3 GeV

$\widetilde{\chi}_1^+$ decay mode	BR(dM1600)
$e\nu\widetilde{\chi}^0_1$	17.3%
$\mu u \widetilde{\chi}_1^0$	16.6%
$\pi^+\widetilde{\chi}^0_1$	16.5%
$\pi^+\pi^0\widetilde{\chi}^0_1$	28.5%

Cut-Flow table

Process	precut	Costh _{soft}	ESoft	EMiss	Costh _{miss}	semilep
Chargino	9816	6176	4366	4366	4059	3746
ch2	17934	4396	3627	3625	3382	1260
Neutralino	8479	1452	1439	1264	1184	70
ee_2f	2.43E+06	200458	843	166	124	75
ee_4f	2.15E+06	237956	839	347	303	124
aa_2f	1.74E+08	1.795E+07	440555	158335	89589	40883
ae_3f	2.95E+07	3.117E+06	191949	39739	22399	5908

Cut-Flow table

Process	Boost E	acoplanarity	Hale's Numbers
Chargino	3540	3020	3813
ch2	1176	1009	-
Neutralino	67	64	97
ee_2f	61	52	0
ee_4f	110	97	0
aa_2f	33856	9131	1452
ae_3f	4601	4443	2564

Extra Cuts - strict ISR photon

- >Criteria for ISR photon with
 - energy > 10 GeV,
 - $|\cos theta| > 0.993$
- > Photons in tau decay can be selected as ISR photon if they fulfill the requirements
- >To veto such events:
 - Angle between ISR candidate and nearest track should be larger
 - Invariant mass of the ISR candidate and nearest track $< M_{\tau} < 1.7 \text{ GeV}$

Extra Cuts - strict ISR photon

- >Criteria for ISR photon with
 - energy > 10 GeV,
 - $|\cos theta| > 0.993$
- > Photons in tau decay can be selected as ISR photon if they fulfill the requirements
- >To veto such events:
 - Angle between ISR candidate and nearest track should be larger
 - Invariant mass of the ISR candidate and nearest track $< M_{\tau} < 1.7 \text{ GeV}$

Number of leptons

- > Semi-leptonic selection of events lepton from di-leptonic decay channel events along with pions from $\gamma\gamma \rightarrow$ low pT hadron events mimic signatures for semi-leptonic events
- >To veto such events Presence of extra lepton which is oppositely charged to the selected lepton candidate
- > If such leptons found then events are vetoed

Final Cutflow table

Process	acoplanar ity	Strict ISR	Leptons	Hale's numbers	Corrected luminosit
Chargino	3020	2242	2147	3813	2147
ch2	1009	763	704	-	704
Neutralin o	64	50	42	97	42
ee_2f	52	37	33	0	33
ee_4f	97	56	29	0	29
aa_2f	9131	3150	2924	1452	1711
ae_3f	4443	2838	2652	2564	1517

Reduced Centr-of-mass Energy

- $> \frac{S}{\sqrt{S+B}} = 27$ for Swathi and 42 for Hale Sert
- >Uncertainties on mass and cross-sections to be determined
- >Promising result

Conclusion

- The inclusion of $\gamma\gamma \to low$ pT hadron overlay has a major impact on the dynamics of low ΔM higgsino events
- >Comparison between studies with and without the $\gamma\gamma \to low pT$ radon overlay performed
- > Track grouping algorithm to separate signal and overlay tracks developed
- > Semi-leptonic selection for events where both the tracks are reconstructed performed efficiently
- > Number of background events reduced to similar levels of study without $\gamma\gamma \to \text{low pT}$ hadron overlay
- > Signal reduced to 56% of events without the inclusion of $\gamma\gamma \to \text{low pT}$ hadron overlay

Tracking Efficiency

- > 100 % tracking efficiency above 300 MeV
- > 72 % of total tracks have p_T above 300MeV
- >Only events with both tracks reconstructed considered

$\tilde{\chi}_1^+$ decay mode	BR(dM770)
$e\nu\widetilde{\chi}_1^0$	15.0%
$\mu\nu\widetilde{\chi}_1^0$	13.7%
$\pi^+\widetilde{\chi}^0_1$	60.4%
$\pi^+\pi^0\widetilde{\chi}^0_1$	7.3%
$\pi^+\pi^0\pi^0\widetilde{\chi}_1^0$	0.03%

Removal of high do tracks

- >For dM770 tracks with higher d₀ mostly include signal tracks
- >Among the tracks coming from two charginos - one has higher d₀ other lower
- >For dM770 track with highest d₀ treated separately assuming to be one signal track

$\tilde{\chi}_1^+$ decay mode	BR(dM770)
$e\nu\widetilde{\chi}_1^0$	15.0%
$\mu\nu\widetilde{\chi}_1^0$	13.7%
$\pi^+\widetilde{\chi}^0_1$	60.4%
$\pi^+\pi^0\widetilde{\chi}^0_1$	7.3%
$\pi^+\pi^0\pi^0\widetilde{\chi}_1^0$	0.03%

dM1600

Separated highest do track

- The track with highest d0 significance value in dM770
- > An algorithm to group tracks was developed and the results were shown in Benchmarking days in Arlington
- > The whole algorithm transported to processor named "TrackZVertexing"
- > The results from the new processor compared with the old results and the new plots are shown

Algorithm Performance (without pair bkg)

- > Signal and background nicely separated
- > No. of groups having signal and background mix is meagre

Algorithm Performance (with pair bkg)

- > Grouping done without the exclusion of pair background
- >Inclusion of pair background doesn't degrade purity of group much

Number of Tracks in Group

- > The number of tracks for signal, bkg and mix groups plotted
- >Highest number groups have one track in which majority are signal groups
- >Groups with two tracks important to identify backgrounds

Reconstructing invariant mass of rho meson

- >Invariant mass of a +ve and -ve tracks in a pure background group is calculated and plotted
- >For both large and small detector a peak at rho mass (770 MeV) visible

Issues found in Reconstruction

- >Invariant mass of rho meson reconstructed using PFO information
- >A sharp peak at pion mass is visible
- The PFO's for the given track are not found
- >Out of the two tracks in a group, PFO for only one track is found whose mass peaks at pion mass
- > Rarely both the PFO's are not found

Conclusion and Outlook

- >Impact of $\gamma\gamma \rightarrow low$ pt hadron overlay on the higgsino events very important
- >Displaced vertices for the signal and background events and the finite life time of the charginos very important factors to develop new method
- New algorithm leading towards the method to remove the $\gamma\gamma \to low$ pt hadron events transported to a new processor and is ready to use
- > Results very encouraging!!
- >Identification of background groups by reconstructing invariant mass from two tracks in a group performed
- >Application on full analysis ongoing
- >Final Result Required : Mass reconstruction of chargino after removal of $\gamma\gamma \to low$ pt background

Questions??

Average position and error

> Weighted avg position =
$$\Sigma_i \frac{Z_0[track_i]}{Z_0[\sigma_i]} / \Sigma_i \frac{1}{Z_{0[\sigma_i]}}$$

> Weighted Avg Error =
$$1/\Sigma_i \sqrt{\frac{1}{Z_0[\sigma_i]}}$$

do projection on zo-zvtx

- >Group tracks with z₀
- >For z_0 to be comparable with z_{vtx} track required to be closest to z-axis
- >Tracks with higher d₀ are away from z-axis
- >Tracks above certain d₀ threshold value to be treated differently

Reconstruction efficiency for $\gamma\gamma \rightarrow low\ pt\ hadron\ tracks$

- > ILDPerformance -Diagnostics package used for tracking efficiency
- > Silicon Tracking algorithm used to reconstruct tracks
- > Reconstruction efficiency of $\gamma\gamma \rightarrow$ low p_T hadron events consistent with $t\bar{t}$ events
- > Reconstruction efficiency for the low pt hadron events
 - Above 300 MeV and at higher angles 99%
- > Important to develop method to remove $\gamma\gamma \rightarrow \text{low pt hadron events}$

ref. Tomohiko Tanabe

Precuts for the Algorithm

- The event should have a hard ISR photon with E > 10 GeV
- >ISR photon gives a pt kick to the bear electron - beam electron within detector acceptance
- > Missing energy from beam particles overlay events
- > For signals the pt kick balanced by the invisible neutralinos
- > No effect on the signal decay products or the beam electron

Summary and Outlook

- > Although physics environment at ILC is very clean $\gamma\gamma$ backgrounds is still important
- > The impact of this overlay is found on a very few specific but important events
- > A better generator to produce $\gamma\gamma$ —low pt hadrons was developed with more realistic particle contents for events
- > Investigating whether different z_vtx position and vector meson tag can be used to remove the backgrounds
- > Work in progress!!
- > OUTLOOK:
 - The method developed will be applied on higgsino samples and Hale Sert's study would be repeated but with inclusion of overlay

Detailed study of do parameter

- > Chargino different branching ratios but always decays into one charged particle
- > Every event should have two tracks from the signal $(\tilde{\chi}_1^+, \tilde{\chi}_1^-)$
- > The d₀ significance of the two tracks of the signal are plotted
- > 60 % cases one track has high value of d0 significance and other is smaller
- > Rest 40 % cases d₀ significance for both tracks are similar

Method Development to remove backgrounds

- > Primary step separating events as in table
 - Pythia events complex 55 % events good chances for finding vertex
 - Only Separating Barklow events as below 45 %

Processes	No. events [%]	Methods to tackle
$\gamma\gamma \to \pi^+\pi^-$	33.43 %	displaced vertices
$\gamma\gamma \to \pi^0\pi^0$		only photons 🙁
$\gamma\gamma \to \rho^+\rho^-$	1.26 %	displaced vertices & rho tag
$\gamma\gamma o ho^0 ho^0$	2.68 %	displaced vertices & rho tag
$\gamma\gamma \to \rho^0\omega$	0.7 %	displaced vertices & rho tag

Method - Using Rho meson tag

- $\rightarrow \gamma \gamma \rightarrow \rho^0 \rho^0$ events rho meson decay to two π^+ and two π^- (2.68 %)
 - Events with exactly 2 +ve and 2 -ve tracks selected
 - Invariant mass calculated from two different combinations
 - mass closest to rho meson chosen and plotted
 - The pion combinations give rho mass -770 145 MeV
 - Only 0.54% events reconstructed exactly as 2 +ve and 2 -ve tracks

Event Properties of Pythia

- Direct Interactions(DIR) Real photons interacts directly
- Vector Meson Dominance(VMD) Photon fluctuates into a vector meson
- Anomalous Interactions(GVMD) Photon fluctuates into a $q\bar{q}$ pair of larger virtuality
- Deep inelastic Scattering(DIS) A process of probing the Hadrons with very high energy leptons.

Subprocesses	Cross-sections (nb)
VMD * VMD	239.2
DIR * VMD	87.52
GVMD * DIR	9.77
GVMD * GVMD	12.05

Pythia cannot simulate below 2 GeV

Cross sections for Pythia events

- \rightarrow Comparison of $\gamma\gamma$ Tow Pt hadron process cross sections from Pythia with PDG, Amaldi et.al(hep-ph/9305247) and data from LEP, PETRA and VEPP
- $> \sqrt{s_{\gamma\gamma}} > 10 \text{ GeV}$: Good description of LEP data with Pythia
- $> \sqrt{s_{\gamma\gamma}} < 10$ GeV: Measurements have large uncertainties and widespread
- > Pythia event properties studied in detail for better understanding

Does $\sqrt{s_{\gamma\gamma}}$ < 1 GeV matter?

- > Detector acceptance for $\sqrt{84}$ GeV
 - Select events $\sqrt{s_{6}}$ 1 GeV
 - Events generated from real-real, real-virtual and virtual-virtual photon collisions
 - Simulate ILD in SGV fast simulation
- > Reconstruction in SGV
 - Particles having <u>3</u> layer hits: "Charged"
 - Particles hitting calorimeter: "Neutral"

Ref: archiv:1203.0217v1

Event Properties of Pythia

Momentum acceptance for Pions

- > Momentum acceptance:
 - Dividing seen stable pions with all true pions
 - The acceptance for most particles > 80%
 - Particles with high Pt but moving in forward direction - low acceptance

A dedicated event generator for $\gamma\gamma$ processes

- > For $\sqrt{s_{\gamma\gamma}}$ > 2 GeV Pythia 6 used to simulate $\gamma\gamma\to {\rm low}~{\rm pT}$ hadron processes
- Below 2 π_m pure QED beam-beam interactions modeled by dedicated programs - Guinea Pig
- Need to evaluate the impact of uncovered region how can it be modeled?
- Dedicated generator developed in ILC community to study low energy region by Tim Barklow
- The particles below 2 GeV Very low Pt
- Could these particles be observed in the detector?
- How important is it to model this area?

Angular acceptance for Pions

-0.5

- > Angular acceptance:
 - Dividing seen stable pions with all true pions
 - The acceptance for most particles > 80%
 - Particles with high Pt but moving in forward direction - low acceptance

0.5

Cos_θ

Momentum acceptance of pions with full simulation

- > Cross checked the results with full simulation
- > acceptance for pions at $\sqrt{2}$ GeV
- Acceptance reasonable enough to model the region below 2 GeV
- Work under progress to confirm the results

Modeling the low energy regime

- > The issues discovered studied and conveyed to the author
- > As expected from Chiral sum rule and Regge theory the generator now produces large variety of events
- > The cross-sections for producing is greater than ρ^{\pm}
- > A better version of the generator was thus developed correcting the issues in older version-big progress!!!

