Analysis of calorimeter data in TB2020

LAKHNO GLEB TSNUK, UKRAINE

Goal: Analysis of signal distribution and their longitudinal and transvers position in LumiCal

Requirements:

Run: # 74

No FLAME (LumiCal takes 1-8 layers)

5 GeV beam

Beam position 10th pad area

LumiCal tilted at 2 degrees

Current TODOs:

Get acquainted with calorimeter data and check for bugs, etc.

Signal selection

$$\mathbf{S}(t) = A \frac{t - t_0}{\tau} e^{-\frac{t - t_0}{\tau}} \theta(t - t_0)$$

Signal selection: 1. $1 < \tau_{fit} < 3$ 2. $S_{max} < 2000$ ADC 3. $t_{1,bin}$ - 2,7 < $t_{0,fit} < t_{1,bin}$ - 0,5 4. $NN_{output} > 0,5$

Signal in calorimeter

Number of empty events for the whole calorimeter for High gain: 18,77% and Low gain: 25,89%

With empty events

Without empty events

Signal in each layer and number of empty events High gain = 31,66%

Low gain = 54,59%

High gain = 39,17%Low gain = 60,26% 5

ATTENTION! All plots have been drawn without empty events.

Low gain = 37,64%

High gain = 27,39%Low gain = 37,91%

High gain = 29,30% Low gain = 38,24% 7

High gain = 28,39%Low gain = 37,95%

Number of empty events

Layer	Low gain	High gain
1	54,59 %	31,66 %
2	60,26 %	39,17 %
3	41,16 %	27,16 %
4	40,94 %	27,16 %
5	37,91 %	27,39 %
6	37,64 %	27,26 %
7	37,95 %	28,39 %
8	38,24 %	29,30 %
Whole LumiCal	25,89 %	18,77 %

Signal in layers

4th layer has dip but after weighting it with a signal this dip disappear

Compare High to Low gain signal in 10 pads by layers

11

layers have peak near to 20th pad which is unknown and about 43rd it is probably crosstalk

Ratio between low and high gain signals

Occupancy in layers

14

1st layer

2nd layer Dark blue pads are bad pads

16

4th layer

6th layer

7th layer

8th layer

Distribution of deposited energy

Red line shows 2 degree tilt

Summary

- Empty events in calorimeter 18,77% for high gain and 25,89% for low gain
- Dip in 4th layer maybe because of bad pads
- Strange peak near to 20th pad

TODOs:

- Ratio high/low for each layer
- Correlation high/low for each layer(cross-check of Bohdan's result from TB19)
- Anything else ? Halina, Wolfgang?

BACKUP

5th and 6th layers with logY scale

5th and 6th layers with logZ scale

Signal with empty events in layers

