Update of *tt***Analysis** 09/25/20 Y. Okugawa, R. Pöschl

ILC Summer Camp 2020

1. Introduction

Top Quark Pair Production at ILC

- ILC at $\sqrt{s} = 500$ GeV will produce many $t\bar{t}$ pairs, which allows a precision measurement on the heavy quark properties.
 - Play a central role for the indirect searches of the new particle beyond the Standard Model predictions to distinguish them from the various other theories.

1. Introduction

• ILC Integrated Luminosity:
$$\int L dt = 4,000 \text{ fb}^{-1}$$

- $t\bar{t}$ cross section
 - $\sigma_{unpol} = 572$ fb, $\sigma_{eLpR} = 1564$ fb, $\sigma_{eRpL} = 724$ fb

3

- Semi-leptonic process
 - 4-jets (final state: $b\bar{b}q\bar{q}'\ell\bar{\nu}$)
 - One isolated lepton, e or μ . (τ is ignored for the time being)
 - eLpR process
- Observable:

 $A_{FB}^{t} = \frac{\overbrace{N(\cos \theta_{t} > 0)}^{e} - \overbrace{N(\cos \theta_{t} < 0)}^{e}}{N(\cos \theta_{t} > 0) + N(\cos \theta_{t} < 0)}$

 $\sigma_{\mathcal{P}_{e^-},\mathcal{P}_{e^+}} = \frac{1}{4} [(1 - \mathcal{P}_{e^-}\mathcal{P}_{e^+})(\sigma_{L,R} + \sigma_{R,L}) + (\mathcal{P}_{e^-} - \mathcal{P}_{e^+})(\sigma_{R,L} - \sigma_{L,R})]$

	Final States	# of jets	B.R.
Full Leptonic	$t\bar{t} \to (b\ell\bar{\nu})(\bar{b}\bar{\ell}\nu)$	2 jets + 2 ℓ	10.5%
Semi Leptonic	$t\bar{t} \to (b\ell\bar{\nu})(\bar{b}q\bar{q}')$	4 jets + 1 ℓ	43.8%
Full Hadronic	$t\bar{t} \rightarrow (bq\bar{q}')(\bar{b}q\bar{q}')$	6 jets	45.7%

1

L

- Semi-leptonic process
 - 4-jets (final state: $b\bar{b}q\bar{q}'\ell\bar{\nu}$)
 - One isolated lepton, e or μ . (τ is ignored for the time being)
 - eLpR process
- Observable:

 $A_{FB}^{t} = \frac{\overbrace{N(\cos \theta_{t} > 0)}^{t} - \overbrace{N(\cos \theta_{t} < 0)}^{t}}{N(\cos \theta_{t} > 0) + N(\cos \theta_{t} < 0)} e^{-\frac{\theta_{t}}{t}}$

 $\sigma_{\mathcal{P}_{e^-},\mathcal{P}_{e^+}} = \frac{1}{4} [(1 - \mathcal{P}_{e^-}\mathcal{P}_{e^+})(\sigma_{L,R} + \sigma_{R,L}) + (\mathcal{P}_{e^-} - \mathcal{P}_{e^+})(\sigma_{R,L} - \sigma_{L,R})]$

	Final States	# of jets	B.R.
Full Leptonic	$t\bar{t} \to (b\ell\bar{\nu})(\bar{b}\bar{\ell}\nu)$	2 jets + 2 ℓ	10.5%
Semi Leptonic	$t\bar{t} \to (b\ell\bar{\nu})(\bar{b}q\bar{q}')$	4 jets + 1 ℓ	43.8%
Full Hadronic	$t\bar{t} \to (bq\bar{q}')(\bar{b}q\bar{q}')$	6 jets	45.7%

1

L

- Semi-leptonic process \bullet
 - 4-jets (final state: $bbq\bar{q}'\ell\bar{\nu}$)
 - One isolated lepton, e or μ . (τ is ignored for the time being)
 - eLpR process
- Observable:

forward backward $N(\cos\theta_t > 0) - N(\cos\theta_t < 0)$ $A_{FB}^t =$ $N(\cos\theta_t > 0) + N(\cos\theta_t < 0)$

 $\sigma_{\mathcal{P}_{e^{-}},\mathcal{P}_{e^{+}}} = \frac{1}{4} \left[(1 - \mathcal{P}_{e^{-}}\mathcal{P}_{e^{+}})(\sigma_{L,R} + \sigma_{R,L}) + (\mathcal{P}_{e^{-}} - \mathcal{P}_{e^{+}})(\sigma_{R,L} - \sigma_{L,R}) \right]$

	Final States	# of jets	B.R.
Full Leptonic	$t\bar{t} \to (b\ell\bar{\nu})(\bar{b}\bar{\ell}\nu)$	2 jets + 2 ℓ	10.5%
Semi Leptonic	$t\bar{t} \to (b\ell\bar{\nu})(\bar{b}q\bar{q}')$	4 jets + 1 ℓ	43.8%
Full Hadronic	$t\bar{t} \to (bq\bar{q}')(\bar{b}q\bar{q}')$	6 jets	45.7%

2. Analysis

Semi-Leptonic Condition

	Semi-Leptonic
Isolated Lepton	Plep > 5 GeV
N jets	4
W± reco	isoLep + q jet

Cuts

種類	カット
b-tag	0.8 < b-tag < 0.3
Thrust	Thrust > 0.9
Mhad (GeV)	180 < Mhad < 420
Top mass (GeV)	120 < Mtop < 270
W±had mass (GeV)	50 < MW < 270

ullet

•

 Polar angle distribution of top quark for all reconstructed events

Result and Precision

$(\mathscr{P}_{e^-}, \mathscr{P}_{e^+})$	(-1, +1)	(+1, -1)
A ^t _{FB,gen}	0.364	0.409
$A_{FB,reco}^t$	0.345	0.369
$\delta_{\!A^t_{FB}}$	0.0025	0.0020
Efficiency	34.6%	64.1%

Precision $A_{FB}^t \approx 0.2 \%$ is achieved for both left and right handed full polarized samples.

Efficiencies reconstructing A_{FB}^{t} for left-handed is lower due to kinematic constraints.

Left-handed : *b*-jet follows the top flight path. Right-handed : W follows the top flight path.

 Polar angle distribution of top quark for all reconstructed events

 Polar angle distribution of top quark only using vtx x vtx comparison.

 Polar angle distribution of top quark for all reconstructed events

Background?

- Mis-combination of b and W?
- Single Top Background?

 Polar angle distribution of top quark only using vtx x vtx comparison.

 Polar angle distribution of top quark for all reconstructed events

Background?

- Mis-combination of b and W?
- Single Top Background?

- Source of systemic error
- Polar angle distribution of top quark only using vtx x vtx comparison.

- Two processes are difficult to be distinguished. •
 - Share the same final states. $(bbq\bar{q}'\ell\bar{\nu})$
 - Events are mixed in the parton level.

 This analysis considered events to correspond to top quark pair production when the following criteria is satisfied for both of W and *b* pairs.

$$|m_{Wb} - m_t^{MC}| < 15 \text{ GeV}$$

If only one of these pair meet this criterium, the events are labeled as single top quark event.

Fuster, J 2015 1434-6052

 This analysis considered events to correspond to top quark pair production when the following criteria is satisfied for both of W and *b* pairs.

$$|m_{Wb} - m_t^{MC}| < 15 \text{ GeV}$$

If only one of these pair meet this criterium, the events are labeled as single top quark event.

Fuster, J 2015 1434-6052

Polar Angle Distribution

 Polar angle distribution of top quark for all reconstructed events after single top rejection from parton level

 Polar angle distribution of top quark only using vtx x vtx comparison after single top rejection from parton level

b-jet Energy Distribution

 b-jet energy distribution of hadronic top for all reconstructed events. b-jet energy distribution of hadronic top only using vtx x vtx comparison.

b-jet Energy Distribution

 b-jet energy distribution of hadronic top for all reconstructed events. b-jet energy distribution of hadronic top only using vtx x vtx comparison.

vtx x vtx method filters soft b's?

5. Summary

- $t\bar{t}$ Pair Production \bullet
 - processed.
 - The ILC is capable of precision measurement of A_{FR}^t up to 0.2% of systematic error.
- **Single Top Analysis** \bullet
 - events on combined generated mass of b and W.
 - Generated single top events consist 12.5% of overall events.
 - Vtx x Vtx comparison scheme seems to eliminate such events by filtering out the soft b-jets.
 - one of jets is indeed soft.

• $t\bar{t}$ production at the ILC at $\sqrt{s} = 500$ GeV for fully-left handed beam polarization using 900,000 events was

Single top problem emerged as a source of systematic error, thus applied a selection for single top generated

Might worth to take a look at momentum distributions of tracks from b-jets in single top events to see if

