New Physics Sumer Camp on ILC Hitoshi Murayama (Berkeley, Kavli IPMU Tokyo) September 25, 2020

Apology

- I volunteered to give a talk but for some reason totally forgot about it.
 - I don't have a dedicated assistant any more...
 - and yesterday was 32th anniversary
- Thank you for rescheduling the talk for today!

Disclaimer

 I am trying to find new ways to exploit ILC for new physics searches. The content of the talk is somewhat sketchy and qualitative. You are warned that what I will discuss should not be taken literally. Your mileage may vary.

Higgs exists!

ATLAS-CONF-2016-067

Standard Model

Are we done?

©Particle Fever

Sta	itus: May 2019									$\int \mathcal{L} dt = (3)$	8.2 − 139) fb ^{−1}	\sqrt{s} = 8, 13 TeV
	Model	<i>ℓ</i> , γ	Jets†	E ^{miss} T	∫£ dt[ft	-1]	Limit					Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqqq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ 2 \ 1 \ e, \mu \\ - \\ 2 \ \gamma \\ multi-channel \\ q 0 \ e, \mu \\ 1 \ e, \mu \\ 2 \ e, \mu \end{array}$	$1 - 4 j$ $- 2 j$ $\geq 2 j$ $\geq 3 j$ $- 2 J$ $1 b, \geq 1 J/2$ $\geq 2 b, \geq 3 j$	Yes - - - 2j Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	MD Ms Mth Mth GKK mass GKK mass GKK mass KK mass KK mass		1 2 1.6 TeV 1.8 T	4.1 Te 2.3 TeV 3.8 TeV eV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV eV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 1.0 \\ k/\overline{M}_{Pl} &= 1.0 \\ \Gamma/m &= 15\% \\ \text{Tier (1,1), } \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to bb \\ \mathrm{Leptophobic} \ Z' \to tt \\ \mathrm{SSM} \ W' \to \ell\nu \\ \mathrm{SSM} \ W' \to \tau\nu \\ \mathrm{HVT} \ V' \to WZ \to qqqq \ \mathrm{model} \\ \mathrm{HVT} \ V' \to WH/ZH \ \mathrm{model} \ \mathrm{B} \\ \mathrm{LRSM} \ W_R \to tb \\ \mathrm{LRSM} \ W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ \tau \\ el \ B \\ 0 \ e, \mu \\ multi-channel \\ 2 \ \mu \end{array}$	- 2 b 1 b, ≥ 1J/2 - 2 J 1 J	_ _ Yes Yes _ _	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass V' mass W _R mass W _R mass		2	5. .42 TeV 1 TeV 3.0 TeV 3.7 TeV 3.6 TeV 2.93 TeV 3.25 TeV 5.	1 TeV 6.0 TeV 9	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	CI qqqq CI ℓℓqq CI tttt	_ 2 e, μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	_ _ Yes	37.0 36.1 36.1	Λ Λ Λ			2.57 TeV		21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
DM	Axial-vector mediator (Dirac DM Colored scalar mediator (Dirac $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM	M) 0 e, μ DM) 0 e, μ 0 e, μ M) 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 0\mbox{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M _* m _{\$}	700 GeV	1.55 TeV 1.67 Te	V 3.4 TeV		$\begin{array}{l} g_q = 0.25, g_{\chi} = 1.0, m(\chi) = 1 \mathrm{GeV} \\ g = 1.0, m(\chi) = 1 \mathrm{GeV} \\ m(\chi) < 150 \mathrm{GeV} \\ y = 0.4, \lambda = 0.2, m(\chi) = 10 \mathrm{GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ГØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e, μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes – Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass	1 	.4 TeV 1.56 TeV V			$\begin{split} \beta &= 1\\ \beta &= 1\\ \mathcal{B}(\mathrm{LQ}_3^u \to b\tau) &= 1\\ \mathcal{B}(\mathrm{LQ}_3^d \to t\tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	multi-channel multi-channel $(2(SS)) \ge 3 e, \mu$ $1 e, \mu \ge 0 e, \mu, 2 \gamma \ge 1 e, \mu$	$\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 1 \text{ b}, \geq 1 \text{ j}$ $\geq 4 \text{ j}$	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1 1 1.2 690 GeV	GeV]	ĝ-	g production	$\tilde{g} \rightarrow qq \tilde{\chi}_1^0$ S Simulation	on Prelimina
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j - -	- - - -	139 36.7 36.1 20.3 20.3	q* mass q* mass b* mass ℓ* mass γ* mass		یر ع	2000	$\int_{-}^{-} L dt = 3$	00, 3000 fb ⁻¹ , $\sqrt{s} = 14$ wombined	TeV
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	1 e, μ 2 μ 2,3,4 e, μ (SS) 3 e, μ, τ –	≥ 2 j 2 j - - -	Yes _ _ _ _	79.8 36.1 36.1 20.3 36.1 34.4	N ⁰ mass N _R mass H ^{±±} mass H ^{±±} mass 400 C multi-charged particle mass monopole mass	560 GeV 870 GeV GeV 1.2		1500		AS 20.3 fb ⁻¹ , \langle s = 8 TeV, 95% C 6 CL limit, 3000 fb ⁻¹ , \langle µ \rangle = 140 6 CL limit, 300 fb ⁻¹ , \langle µ \rangle = 60 disc., 300 fb ⁻¹ , \langle µ \rangle = 140 disc., 300 fb ⁻¹ , \langle µ \rangle = 60	
*Onl †Sm	vs = 8 TeV y a selection of the availab all-radius (large-radius) jet	Vs = 13 TeV Dartial data Dele mass limits ts are denoted	<mark>√s = 13 full da</mark> s on new d by the l	TeV Ita states letter j	s or phei (J).	10 ⁻¹ nomena is shown.			1000	-	al louist and	

500

0

500

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits Si

Heavy

Excited

ATLAS Preliminary

1500

2000

2500

1000

 $\sigma_{bkg} = 10\%$

3000 m_g [GeV]

The New York Times

Science

WORLD	U.S.	N.Y. / REGION	BUSINESS	TECHNOLOGY	SCIENCE	HEALTH
ENVIR						

315 Physicists Report Failure In Search for Supersymmetry

By MALCOLM W. BROWNE Published: January 5, 1993

Three hundred and fifteen physicists worked on the experiment.

Their apparatus included the Tevatron, the world's most powerful particle accelerator, as well as a \$65 million detector weighing as

Better Late Than Never

Even m_{SUSY}~10 TeV ameliorates fine-tuning from 10⁻³⁶ to 10⁻⁴

lore

- LHC has not discovered any new physics
- ILC energy is much lower than LHC
- ILC will never discover new particles
- focus on deviation from SM in precision measurements
 indirect probe
- maybe unusually difficult case at LHC?

R-parity violation compressed spectrum disappearing tracks clever analysis

clever analysis precision Higgs, flavor HL-LHC ILC!

A 3 0 2:40 0 B 12:45 19 12:45 B13 12:50 A 2 6 A 37 13:00 A40 13:00 A 2 8 13:10 A 3 4 13:15 A 2 2 13:20 B09 13:30 A 2 7

JANEIRO

DELAYED DELA DELAYED DELAYED DELAYED DELAYED DELAYED DELAYED DELAYED

higgsino, wino $\tilde{\chi}^{\pm} \rightarrow \tilde{\chi}^{0} + X$ $X = \pi^{\pm}, \ell^{\pm}\nu_{\ell}, \text{etc}$ $\tilde{\chi}^{\pm} + \text{detector} \rightarrow \tilde{\chi}^{0}$

arXiv:2002.01239

Five evidences for physics beyond SM

- Since 1998, it became clear that there are at least five missing pieces in the SM
 - non-baryonic dark matter
 - neutrino mass
 - dark energy

- apparently acausal density fluctuations
- baryon asymmetry

We don't really know their energy scales...

where is dark matter?

only ideas I had worked on

portals

• light new physics must be neutral under SM

Higgs portal, plot for direct searches

Twin Higgs

- □ All NP within LHC reach is SM neutral.
- PNGB Higgs, cancelation ...

Roni Harnik and Zackaria Chacko, JHU workshop 2017 in Budapest

Antisymmetric Matters genesis

Nell Hall, Thomas Konstandin, HM, Robert McGehee arXiv:1911.12342

Electroweak Baryogenesis

- First-order phase transition
- Different reflection probabilities for *t*_L, *t*_R
- asymmetry in top quark
- Left-handed top quark asymmetry partially converted to lepton asymmetry via anomaly
- Remaining top quark asymmetry becomes baryon asymmetry
- need varying CP phase inside the bubble wall (G. Servant)
- fixed KM phase doesn't help
- need CPV in Higgs sector

Electric Dipole Moment

- baryon asymmetry limited by the sphaleron rate $\Gamma \sim 20 \alpha_W^5 T \sim 10^{-6} T$
- Can't lose much more to obtain 10⁻⁹
- need
 - new physics for 1st order PT at the Higgs scale v=250 GeV
 - CP violation×efficiency ≥10⁻³

ARTICLE

Oct 2018

https://doi.org/10.1038/s41586-018-0599-8

Improved limit on the electric dipole moment of the electron

ACME Collaboration*

$d_e \le 1.1 \times 10^{-29} e cm$

Barr-Zee diagrams

$$d_e \approx \frac{em_e}{(16\pi^2)^2} \frac{1}{v^2} \sin \delta = 1.6 \times 10^{-22} e^{10} \cos \delta$$

Anomaly!

- W and Z bosons massless at high temperature
- W field fluctuates just like in thermal plasma
- solve Dirac equation in the presence of the fluctuating W field

 $\Delta q = \Delta q = \Delta q = \Delta L$

 $\tau(^{3}\text{He} \rightarrow e^{+}\mu^{+}\overline{\nu}_{\tau}) \sim 10^{150}\text{yrs}$

Sakharov Conditions

- Standard Model may have all three ingredients
- **Baryon number violation**
 - Electroweak anomaly (sphaleron effect)
- CP violation
 - Kobayashi–Maskawa phase ightarrow
 - $\int \propto \det[M_u^{\dagger}M_u, M_d^{\dagger}M_d]/T_{EW}^{12} \sim |0^{-20} \ll |0^{-10}$ Non-equilibrium
- - First-order phase transition of Higgs ightarrow

requires $m_h < 75 \text{ GeV}$

Experimentally testable?

dark baryons are ~20 GeV

Dark Neutron Dark Matter

Dark Proton & Pion Dark Matter

Higgs →dark sector →SM

95% C.L. upper limit on selected Higgs Exotic Decay BR

Zhen Liu, Lian-Tao Wang, Hao Zhang, arXiv:1612.09284

If the asymmetry goes from SM to dark sector, dark baryons are ~50 GeV

Yonit Hochberg, Eric Kuflik, HM, arXiv:1512.07917, 1706.05008

Dark Spectroscopy

Dark Spectroscopy

FASER@LHC

FASER@LHC

Mathulsa@LHC

Mathulsa@LHC

a long-lived scalar mixed with Higgs

Proposal	Main physics cases	Beam line	Beam type	Beam yield
Sub-eV mass range:				
IAXO	Axions/ALPs (photon coupling)	—	Axions from sun	
JURA	Axions/ALPs (photon coupling)	Laboratory	eV photons	
CPEDM	p, d oEDMs	EDM ring	p, d	
	axions/ALPs (gluon coupling)		<i>p</i> , <i>d</i>	
LHC-FT	Charmed hadrons oEDMs	LHCb IP	7 TeV <i>p</i>	
MeV-GeV mass range:				
SHiP	ALPs, dark photons, dark scalars	BDF, SPS	400 GeV <i>p</i>	$2 \times 10^{20}/5$ years
	LDM, HNLs, lepto-phobic DM,			
NA62 ⁺⁺	ALPs, dark photons,	K12, SPS	400 GeV <i>p</i>	up to 3 \times 10 ¹⁸ /year
	dark scalars, HNLs			
NA64 ⁺⁺	ALPs, dark photons,	H4, SPS	$100 \text{ GeV } e^-$	5×10^{12} eot/year
	dark scalars, LDM			
	$+$ L_{μ} $ L_{ au}$	M2, SPS	160 GeV μ	$10^{12} - 10^{13} \text{ mot/year}$
	+ CP, CPT, leptophobic DM	H2-H8, T9	$\sim 40 \text{ GeV} \pi$, K, p	5×10^{12} /year
LDMX	Dark photon, LDM, ALPs	eSPS	8 (SLAC) -16 (eSPS) GeV e^-	$10^{16} - 10^{18} \text{ eot/year}$
AWAKE/NA64	Dark photon	AWAKE beam	30-50 GeV <i>e</i> ⁻	10^{16} eot/year
REDTOP	Dark photon, dark scalar, ALPs	CERN PS	1.8 or 3.5 GeV	10 ¹⁷ pot
MATHUSLA200	Weak-scale LLPs, dark scalar,	ATLAS or CMS IP	14 TeV <i>p</i>	3000 fb^{-1}
	Dark photon, ALPs, HNLs			
FASER	Dark photon, dark scalar, ALPs,	ATLAS IP	14 TeV <i>p</i>	3000 fb^{-1}
	HNLs, $B - L$ gauge bosons			
MilliQan	Milli charge	CMS IP	14 TeV <i>p</i>	$300-3000 \text{ fb}^{-1}$
CODEX-b	Dark scalar, HNLs, ALPs,	LHCb IP	14 TeV <i>p</i>	$300 {\rm fb}^{-1}$
	LDM, Higgs decays			
>> TeV mass range:				
KIFVFR	$K_{\rm r} \rightarrow \pi^0 v \overline{\nu}$	P42/K12	400 GeV n	5×10^{19} pot /5 years

ILC250: 10²¹ e[±] / year

fixed target, beam dump

dark photon, axion, sterile neutrino, etc

beam dump

Shinya Kanemura, Takeo Moroi, Tomohiko Tanabe, arXiv:1507.02809

future upgrades

ILC Nb	40MV/m	ITeV
ILC Nb ₃ Sn	I00MV/m	3TeV
CLIC	I00MV/m	3TeV
PWFA	IGV/m	30TeV

30 TeV

Fig. 5.1: Conceptual schematic of a 30 TeV DLA e+ e- collider driven by a carrier envelope phase locked network of energy-efficient solid-state fiber lasers at 20 MHz repetition rate. Laser power is distributed by photonic waveguides to a sequence of dielectric accelerating, focusing, and steering elements co-fabricated on 6-inch wafers which are aligned and stabilized using mechanical and thermal active feedback systems.

lepton vs proton

arXiv:2005.10289

What I discussed

- mass vs coupling
- exotic Higgs/Z decay
- dark spectroscopy
- long-lived particle
- beam dump
- higher energies

- despite lack of new physics at LHC, ILC has many opportunities to discover new physics
- so far emphasis on precision measurements
- light dark sector: active discussions recently
- standard collider mode, detectors away from IP, beam dump, fixed target
- more ideas?