

Precision Electroweak Measurements with ILC250

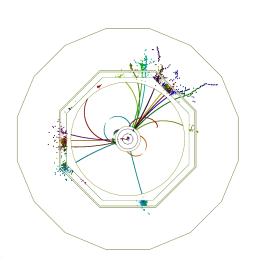
Emphasis on Experimental Measurement Aspects Including \sqrt{s} , Polarization

Graham W. Wilson

University of Kansas

July 28, 2020

 $\ensuremath{\mathsf{ILC}}$ is a unique and timely opportunity for understanding the electroweak scale


Many (physics, detector, and accelerator) opportunities [1] to make it better!

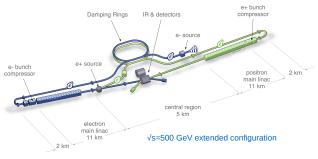
More information on EWPO estimates in [2]

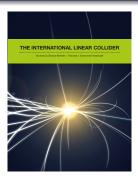
Talk focus: Selected EW measurements with initial $\sqrt{s} \leq 250~\text{GeV}$ stage

Outline

- Physics Motivation & Remarks
- 2 ILC Accelerator and Detectors
- 3 Experimental Issues
- W Mass
- \bigcirc A_{LR}
- 6 Higher Energy
- Experimental Systematics
- 8 Summary
- References

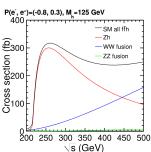
Physics Motivation


- Direct discovery of new physics would be wonderful
- Before the top and Higgs discoveries, precision measurements of then observable SM parameters pointed the way
- Newer physics may continue to evade direct collider detection
- Ultra-precise measurements of known physics can probe potentially much higher energy scales and associated new physics
- How best to do this?
 - Need flexible, broad and probing program of the underlying dynamics
 - Precision measurements at high energy: W⁺W⁻, ff̄ full reconstruction
 - ullet High precision measurements of other parameters at suitable \sqrt{s} including top-pair threshold and Z-pole, and potentially WW threshold
 - Polarized beams (ILC strength 4 colliders-in-1) give essential insight
- ullet The physics case for a future e^+e^- collider is very well established. Let's seize this opportunity and explore the physics.

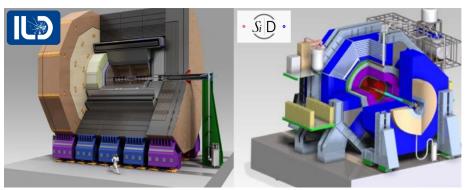

e⁺e⁻ Linear Colliders

Linear colliders are the only practical way with ${\rm e^+e^-}$ to go significantly above the top-pair threshold (synchrotron radiation and real-world economics)

- ILC is based on superconducting RF (mature and power efficient)
 - Under study and development for many years
 - Fully international project with strong participation from US, Europe and Asia
 - Technology deployed in many facilities: XFEL, LCLS-II
- ILC TDR 2013 engineered design capable of $\sqrt{s}=200-500$ GeV upgradable to 1 TeV and potentially beyond
 - \bullet Longitudinally polarized e^- (80%) and e^+ (30%) beams
 - Japan is exploring hosting the ILC as a global project
 - With the Higgs discovery guaranteed rich physics program
- Recent years o focus on starting at $\sqrt{s} = 250$ GeV with energy extendability
 - ullet Optimized design for $\sqrt{s}=250$ GeV with higher luminosity (\mathcal{L})
 - Now have easily achievable running with polarized beams at lower energies, including $\sqrt{s} \approx M_Z$ with $\mathcal{L} = 4.2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
 - New appreciation in Japan of the longer-term opportunities with higher energy
- International ILC project is transitioning toward realization in Japan

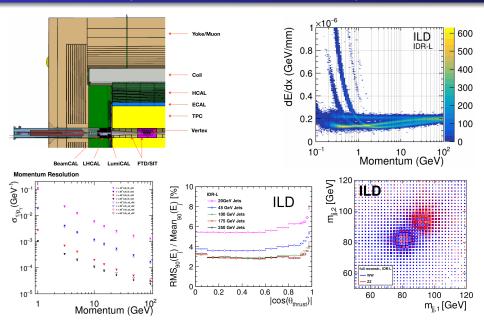

International Linear Collider Project

N of Tokyo (2hrs by train), between Sendai & Morioka

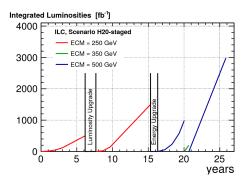

- TDR 2013 [3]
- 2019 update [4]
- 20.5 km footprint for initial 250 GeV stage

ILC Detectors

Modern detectors designed for ILC [5]


ILD = International Large Detector (also ILD Interim Design Report (IDR) [6])

SiD = Silicon Detector



- B=3.5-5T. Particle-flow for jets. Very hermetic.
- Low material. Precision vertexing.
- ILD tracking centered around a Time Projection Chamber (TPC).

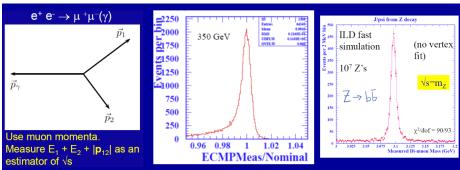
ILD Detector (See IDR and T. Tanabe talk)

ILC Parameters / Run Scenarios

- Baseline scenario for study
- Run plan flexible will evolve
- Future upgrade to 1 TeV $(8000~{\rm fb}^{-1})$ and potentially beyond
- Options for dedicated running with polarized beams
 - Z-pole (100 fb⁻¹)
 - WW threshold (500 ${
 m fb}^{-1}$)

- \bullet 6.2 ${
 m ab}^{-1}$ total at 250, 350, 500 GeV
- Dedicate 200 fb⁻¹ to top-pair threshold
- See Ref. [4] for details

	int. luminosity with $sgn(P(e^-), P(e^+)) =$					
	(-,+)	(+,-)	(-,-)	(+,+)		
\sqrt{s}	$[fb^{-1}]$	$[fb^{-1}]$	$[fb^{-1}]$	[fb ⁻¹]		
250 GeV (update)	900	900	100	100		
$350\mathrm{GeV}$	135	45	10	10		
$500\mathrm{GeV}$	1600	1600	400	400		

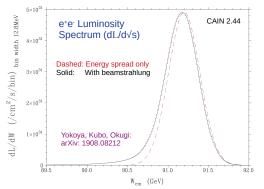

Assumes
$$(|P_{e^{-}}|, |P_{e^{+}}|) = (0.8, 0.3)$$

Center-of-Mass Energy Measurement

Critical input for $M_{\rm t}$, $M_{\rm W}$, $M_{\rm H}$, $M_{\rm Z}$, $M_{\rm X}$ measurements

- **①** Standard precision of $\mathcal{O}(10^{-4})$ in \sqrt{s} for $M_{\rm t}$ straightforward
- **②** Targeting precision of $\mathcal{O}(10^{-5})$ in \sqrt{s} for M_{W} given likely systematics
- ullet For $M_{
 m Z}$ helps to do even better

Use di-muon momenta method, using $\sqrt{s}_p = E_+ + E_- + |\vec{p}_{+-}|$ estimator. Tie detector p-scale to the J/ψ mass scale (known to 1.9 ppm). See backup, [7].

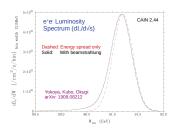


Measure $<\sqrt{s}>$ and luminosity spectrum with same events. Expect statistical uncertainty of 1.0 ppm on *p*-scale per 1.2M $J/\psi \to \mu^+\mu^-$ (4 \times 10⁹ hadronic Z's).

ILC running below $\sqrt{s} = 250 \text{ GeV}$?

Always foreseen as an "option" that should be justifiable by the physics du jour

- ILC TDR design focused on $\sqrt{s} > 200 \text{ GeV}$
- \bullet Luminosity naturally scales with γ at a linear collider
- New design with polarized beams at Z-pole with $\mathcal{L}=4.2\times10^{33}\mathrm{cm^{-2}s^{-1}}$ [8]
- Enables a broader program of electroweak measurements
- High Z statistics for detector calibration/alignment, physics modeling


How well can one do with 100 fb^{-1} polarized at the Z?

- Control systematics?
- 4.2×10^9 hadronic events
- 2.0×10^8 dimuons
- $2.0 \times 10^7 \text{ J}/\psi$
- FWHM is about 500 MeV

Lots of fun questions to explore

Center-of-mass Energy Calibration around the Z-Pole

- \bullet Use 200M $Z \to \mu^+ \mu^-$ and $\sqrt{s}_{\it p}$ method
- With ILC $\Delta p/p$ of 0.15%, $\Delta \sqrt{s}_p \approx$ 230 MeV per dimuon event
- ullet \Rightarrow stat. uncertainty of 0.18 ppm on average \sqrt{s}_p with 100 ${
 m fb}^{-1}$ Z run

- In the same Z run, can measure p-scale with 1.0 ppm stat. uncertainty from $J/\psi \to \mu^+\mu^-$ (< 1.9 ppm: $m_{J/\psi}$ PDG target)
- Collect Z events, and concurrently measure cross sections & asymmetries, C-o-M energy/lumi. spectrum, p-scale in situ.
- ullet Overall p-scale uncertainty of 2.5 ppm conceivable $(>1.0 \oplus 1.9)$ ppm
- Need further study of tracker design and \sqrt{s}_p method
- ullet Can envisage order-of-magnitude improvements on $extit{$M_{
 m Z}$}$ and $extstyle \Gamma_{
 m Z}$
- 2.5 ppm on $M_{\rm Z}$ is 230 keV.

For now, estimate 5 ppm on \sqrt{s} -scale at $\sqrt{s} \approx M_{\rm Z}$ and 10 ppm at higher \sqrt{s}

Longitudinally Polarized Beams

ILC baseline design has $\mathrm{e^-}$ polarized to 80%, $\mathrm{e^+}$ to 30%

- ullet $P_{
 m e^-}=90\%$ is not out of the question
- ullet $P_{
 m e^+}=60\%$ is under study, is valuable, and may be feasible

Longitudinal polarization not expected to cost luminosity.

$$\sigma(P_{e^{-}}, P_{e^{+}}) = \frac{1}{4} \{ (1 - P_{e^{-}})(1 + P_{e^{+}})\sigma_{LR} + (1 + P_{e^{-}})(1 - P_{e^{+}})\sigma_{RL} + (1 - P_{e^{-}})(1 - P_{e^{+}})\sigma_{LL} + (1 + P_{e^{-}})(1 + P_{e^{+}})\sigma_{RR} \}$$

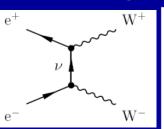
where σ_k (k= LR, RL, LL and RR) are the fully polarized cross-sections [9]

Straightforward to measure the absolute polarization of both beams in situ when $\sigma_{LL}=\sigma_{RR}=0$ (such as γ/Z exchange) using 4 σ measurements ($\sigma_{-+},\sigma_{+-},\sigma_{--},\sigma_{++}$). Solve for 4 unknowns (σ_U , A_{LR} , $|P_{\rm e^-}|$, $|P_{\rm e^+}|$), where,

$$A_{LR} \equiv \frac{\sigma_{LR} - \sigma_{RL}}{(\sigma_{LR} + \sigma_{RL})}$$

Supplement with polarimeters to track relative polarization changes. See talk by J.List and backup slides for more details.

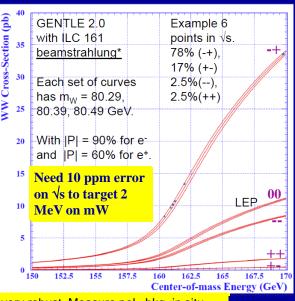
W Mass


 $M_{
m W}$ is an experimental challenge. Especially for hadron colliders.

The four most promising approaches [2] to measure $M_{
m W}$ at ILC are:

- **9** Polarized Threshold Scan Measurement of $\sigma_{W^+W^-}$ near **threshold** with longitudinally **polarized** beams. Unique ILC potential.
- $\hbox{ @ Constrained Reconstruction Kinematically-constrained} \ \ {\rm reconstruction} \ \ {\rm of} \\ \ W^+W^- \ \ {\rm using} \ \ {\rm 4-momentum} \ \ {\rm conservation} \ \ {\rm and} \ \ {\rm optionally} \ \ {\rm mass-equality.}$ (LEP2 main method)
- **9** Hadronic Mass Direct measurement of the **hadronic mass**. Can apply to hadronically decaying W's in semi-leptonic W^+W^- or single-W events.
- Leptonic Observables Use lepton **endpoints** in semi-leptonic and fully leptonic W^+W^- events with either $W \to e \nu_e$ or $W \to \mu \nu_\mu$. Use **pseudomasses** in dilepton events with no taus.

Method 1 needs dedicated running near $\sqrt{s}=161$ GeV. Methods 2–4 can exploit the standard $\sqrt{s}\geq 250$ GeV ILC program (deserve more study). Methods 1, 2, and 4 rely on \sqrt{s} -scale systematic control. Target 2 MeV uncertainty on $M_{\rm W}$.


ILC Polarized Threshold Scan

Use (-+) helicity combination of e- and e+ to enhance WW.

Use (+-) helicity to suppress WW and measure background.

Use (--) and (++) to control polarization (also use 150 pb Z-like events)

Experimentally very robust. Measure pol., bkg. in situ

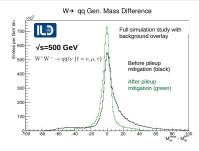
Results from updated ILC study [10]

		_	
Fit parameter	Value	Error	
m_W (MeV)	80,388	3.8	
f_l	1.0002	0.0009	
ε (IvIv)	1.0004	0.001	
ε (qqlv)	0.9998	0.001	
arepsilon (qqqq)	1.0000	0.001	
σ_B (IvIv) (fb)	10.3	0.9	
σ_B (qqlv) (fb)	40.5	2.3	
σ_B (qqqq) (fb)	196	4	
A_{LR}^{B} (IvIv)	0.156	0.025	
A_{LR}^{E} (IVIV) A_{LR}^{B} (qqlv) A_{LR}^{B} (qqqq)	0.298	0.012	
$A_{IR}^{B'}$ (qqqq)	0.480	0.005	
P(e^-)	0.899	0.001	
$ P(e^+) $	0.601	0.001	
$\sigma_{ m Z}$ (pb)	149.92	0.05	
$A_{LR}^{\dot{Z}}$	0.1906	0.0003	

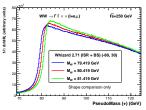
← Example fit:

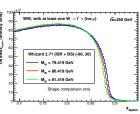
- 6-point scan as illustrated
- 100 fb⁻¹

•
$$(|P_{e^-}|, |P_{e^+}|) = (0.9, 0.6)$$


$ P(e^-) $	$ P(e^+) $	$100 \; { m fb}^{-1}$	$500 \; { m fb}^{-1}$
80 %	30 %	6.0	2.9
90 %	30 %	5.2	2.6
80 %	60 %	4.0	2.2
90 %	60 %	3.8	2.1

Total $M_{
m W}$ experimental uncertainty (MeV)


10 ppm assumed uncertainty on \sqrt{s} \Rightarrow additional 0.8 MeV on $M_{\rm W}$


Fit essentially **includes** experimental systematics. Main one - **background** determination.

$M_{\rm W}$, $\Gamma_{\rm W}$ from higher energy runs

- Hadronic mass study,
 J. Anguiano (KU).
- Stat. $\Delta M_{\rm W} = 2.4$ MeV for $1.6~{\rm ab}^{-1}$ (-80%, +30%).
- ullet Can be improved, but $m_{
 m had}$ -only measurement likely limited by JES systematic
- Expect improvements with constrained fit and $\sqrt{s} = 250$ GeV data set

Sensitivity to M_{W} with lepton distributions: dilepton pseudomasses, lepton endpoints

- Stat. $\Delta M_{\rm W} = 4.4$ MeV for 2 ab⁻¹ (45,45,5,5) at $\sqrt{s} = 250$ GeV
- Leptonic observables (shape-only): x_{ℓ} , M_+ , M_- . Exptl. systematics small.

A_{LR} at $\sqrt{s} pprox M_{ m Z}$ (Studied initially by K. Mönig [11])

For
$$Z \to f \bar{f}$$
, With $(P_{e^-}, P_{e^+}) = (0.8, 0.6)$, $f_{SS} = 0.08$:
$$\sigma = \sigma_u [1 - P^+ P^- + A_{LR}(P^+ - P^-)] \qquad \Delta A_{LR}(stat) = 1.7 \times 10^{-5} / \sqrt{\mathcal{L}(0.1 \text{ ab}^{-1})}$$

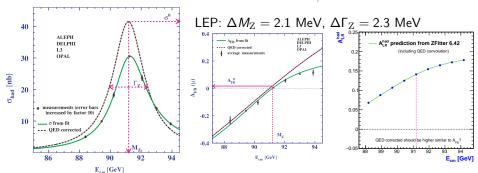
Statistical Systematics

Source Bhabha Statistics relative L ($\sigma_{\rm Bhabha} = 250$ nb) Multiplicative Factor 1.09 Compton Statistics relative P of opposite helicity 1.34

Center-of-mass Energy (relative to $M_{\rm Z}$)

$$dA_{LR}/d\sqrt{s}=2.0 imes10^{-2}~{
m GeV}^{-1}.$$
 5 ppm on $\sqrt{s}\Rightarrow0.9 imes10^{-5}$ on A_{LR}

Beamstrahlung (machine dependent)

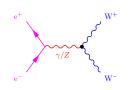

TESLA study \Rightarrow change in A_{LR} of 9×10^{-4} . Assume known to $1\% \Rightarrow 0.9 \times 10^{-5}$ on A_{LR} .

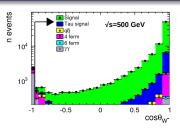
$$\Delta A_{LR}(10^{-5}) = 2.4/\sqrt{L(100 \text{ fb}^{-1})} \text{ (stat) } \oplus 0.9 \text{ (}\sqrt{\text{s})} \oplus 0.9 \text{ (BS)}$$

Can target experimental precision on A_{LR} of 3×10^{-5} with $100~{\rm fb^{-1}}$. Oft-cited 10^{-4} prospect $(1.3 \times 10^{-5} {\rm on \ sin^2} \, \theta_{\rm eff}^{\ell})$ with 30 fb⁻¹ well within reach (it was conservative).

Polarized Beams Z Scan for Z LineShape and Asymmetries

Essentially, redo LEP/SLC-style measurements in all channels but also with \sqrt{s} dependence of the polarized asymmetries, A_{LR} and $A_{FB,LR}^f$, in addition to A_{FB} .


With 100 fb⁻¹ polarized scan around $M_{\rm Z}$, find **statistical** uncertainties of 35 keV on $M_{\rm Z}$, and 80 keV on $\Gamma_{\rm Z}$, from LEP-style fit to $(M_{\rm Z},\Gamma_{\rm Z},\sigma_{\rm had}^0,R_e^0,R_\mu^0,R_\tau^0)$ using ZFITTER 6.42 [12] for QED convolution.


Exploiting this fully needs in-depth study of \sqrt{s} calibration systematics + possibly smaller energy-spread. ILC $\mathcal L$ is sufficient for M_Z . Γ_Z systematic uncertainty depends on $(\sqrt{s}_+ - \sqrt{s}_-)$ uncertainty, so expect $\Delta\Gamma_Z < \Delta M_Z$.

Higher Energy: Triple Gauge Couplings (WW γ , WWZ)

TGCs:
$$(g_1^{\mathrm{Z}}, \, \kappa_\gamma, \, \lambda_\gamma)$$

Example with $W^+W^- o q\overline{q}\ell
u$

\sqrt{s} (GeV)	g_1^{Z}	κ_{γ}	λ_{γ}
250	6.2	9.6	7.7
500	2.5	3.4	3.7
1000	0.88	1.1	0.90

Δθ₂ LEP2 — ILC 250
Δκ.,
Δλ.,
-0.05 0 0.05
TGC Limits @ 68% CL

Uncertainties (10^{-4}) from 3 TGC parameters fit with 0.5 ab⁻¹ equally shared between (-80, 30)% and (80, -30)%

- Based on full simulation studies (ILD) and their extrapolation [2, 4, 13]
- ullet Higher energy better given $s/M_{
 m W}^2$ dependence of TGCs (and γ scaling of ${\cal L}$)
- \bullet Already with ILC250 (2 $ab^{-1})\text{, expect 0.05\% precision cf 5\% at LEP2 (ALEPH)}$

Summary

- ILC can advance greatly our knowledge of electroweak precision physics.
- Polarized electron and **positron** beams are a unique asset.
- Can deliver much more rigorous test of the SM which explores new physics. Highlighted by top mass measurement and

$$\Delta M_{
m W} = 2 - 3 \, {
m MeV}$$

$$\Delta A_{LR}(10^{-5}) = 2.4/\sqrt{L(100 \text{ fb}^{-1})} \text{ (stat) } \oplus 0.9 \text{ (}\sqrt{\text{s}}\text{)} \oplus 0.9 \text{(BS)}$$

- ullet Scope for best $M_{
 m W}$ measurements from standard ILC running.
- Experimental strategies for controlling systematics associated with \sqrt{s} , polarization, luminosity spectrum are worked out.
- Momentum scale is a key. Enabled by precision low material tracker. Promises to also open up precision measurement advances for $M_{\rm Z}$, $\Gamma_{\rm Z}$, etc
- More study on expt./acc. systematics + tracker design work necessary.
- An accelerator is needed! On-going very encouraging developments in Japan.
- The physics discussed here benefits greatly given that the accelerator is now designed to include efficient running at lower \sqrt{s} .

References I

- [1] K. Fujii et al., [LCC Physics Working Group], ILC Study Questions for Snowmass 2021, arXiv:2007.03650
- [2] K. Fujii et al. [LCC Physics Working Group], Tests of the Standard Model at the International Linear Collider arXiv:1908.11299
- [3] T. Behnke et al.
 The International Linear Collider Technical Design Report Volume 1:
 Executive Summary, arXiv:1306.6327
- [4] P. Bambade et al.
 The International Linear Collider: A Global Project, arXiv:1903.01629
- [5] T. Behnke et al. The International Linear Collider Technical Design Report - Volume 4: Detectors, arXiv:1306.6329
- [6] H. Abramowicz et al. [ILD Concept Group], International Large Detector: Interim Design Report, arXiv:2003.01116

References II

- [7] G. W. Wilson, Precision Electroweak Measurements at a Future e^+e^- Linear Collider, PoS **ICHEP2016**, 688 (2016)
- [8] K. Yokoya, K. Kubo and T. Okugi, Operation of ILC250 at the Z-pole, arXiv:1908.08212
- [9] K. Fujii et al. [LCC Physics Working Group], The role of positron polarization for the initial 250 GeV stage of the International Linear Collider, arXiv:1801.02840
- [10] G. W. Wilson, Updated Study of a Precision Measurement of the W Mass from a Threshold Scan Using Polarized ${\rm e^-}$ and ${\rm e^+}$ at ILC, arXiv:1603.06016
- [11] R. Hawkings and K. Monig, Electroweak and CP violation physics at a linear collider Z factory, Eur. Phys. J. direct ${\bf 1}$, 1 (2000)

References III

- [12] A. B. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M. W. Grunewald, K. Monig, S. Riemann and T. Riemann, ZFITTER: A semi-analytical program for fermion pair production in e⁺e⁻ annihilation from version 6.21 to version 6.42, Comput. Phys. Commun. 174, 728-758 (2006)
- [13] K. Fujii et al. [LCC Physics Working Group], "Physics Case for the 250 GeV Stage of the International Linear Collider," arXiv:1710.07621
- [14] A. Babich, P. Osland, A. Pankov and N. Paver, New physics signatures at a linear collider: Model independent analysis from 'conventional' polarized observables, Phys. Lett. B 518, 128-136 (2001)

Acknowledgments

Backup Slides

ILC Project Timelines

Recent Progress Towards Realizing ILC

Inter-governmental discussions already begun

Japan-US (2016~); Japan-France-Germany-UK (Feb. 2020~)

Support from United States, e.g.

Letter from US Deputy Secretary of State to JP Foreign Minister:

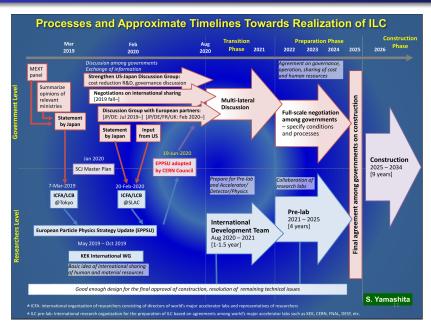
"strongly support to advance ILC in Japan" (Feb. 2020)

Reported by Yomiuri Shimbun May 13, 2020

European Strategy (June 2020):

"The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate."

Proposed timeline for ILC project



ILC International Development Team (1-1.5 yr)

plan to start in Aug. 2020 [to be approved by ICFA on Aug. 2, 2020]

→ transition towards ILC "**Pre-Lab**" – technical preparation (in parallel with inter-governmental negotiations)

ILC Project Timeline Details

Ubiquity of $\mu^+\mu^-/Z$ in \sqrt{s} scale discussion

" $\mu^+\mu^-$ " or "Z" appears in many places - for varied, but related purposes.

- Full energy $\mu^+\mu^-\colon \mathrm{e^+e^-} \to \mu^+\mu^-$ with little ISR $(s'\approx s\gg M_{\mathrm{Z}}^2)$
- ② Radiative return $\mu^+\mu^-$: $e^+e^- \to \mu^+\mu^-\gamma(\gamma)$ with lots of ISR $(s \gg s' \approx M_Z^2)$. The photon(s) may or may not be detected.
- **3** Z-pole $\mu^+\mu^-\colon \mathrm{e^+e^-} \to \mu^+\mu^-$ with \sqrt{s} near M_{Z}
- $J/\psi \to \mu^+\mu^-$: A common source of J/ψ is from $Z \to b\overline{b}$.

Why?

- The old method of choice for \sqrt{s} estimation at ILC was to use radiative return $\mu^+\mu^-$ and angle-based reconstruction. Robust but suffers statistically due to $\Gamma_{\rm Z}/M_{\rm Z}$ and relies on $M_{\rm Z}$ (23 ppm)
- New method for \sqrt{s} estimation uses all $\mu^+\mu^-$ (both full energy, intermediate energy, radiative return) to form a muon-momentum based estimator, $\sqrt{s}_{\rm P}$.
- In turn $\sqrt{s}_{\rm P}$ needs the tracker momentum-scale to be calibrated to high precision. Principally use $J/\psi \to \mu^+\mu^-$ for this. Z running is very helpful.
- Given the 0.15% tracker momentum resolution, Z-pole $\mu^+\mu^-$, can also be used to measure \sqrt{s} for Z-pole runs (limited by 1.9 ppm $m_{J/\psi}$ knowledge).

Momentum Scale Calibration (essential for \sqrt{s})

Most obvious is to use $J/\psi \to \mu^+\mu^-$. But event rate is limited.

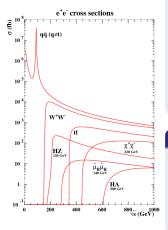
Particle	$n_{Z^{\mathrm{had}}}$	Decay	BR (%)	$n_{Z^{ ext{had}}} \cdot BR$	Γ/Μ	PDG ($\Delta M/M$)
J/ψ	0.0052	$\mu^+\mu^-$	5.93	0.00031	3.0×10^{-5}	1.9×10^{-6}
${ m K_S^0}$	1.02	$\pi^+\pi^-$	69.2	0.71	1.5×10^{-14}	2.6×10^{-5}
٨	0.39	π^- p	63.9	0.25	2.2×10^{-15}	5.4×10^{-6}
D^0	0.45	$K^-\pi^+$	3.88	0.0175	8.6×10^{-13}	2.7×10^{-5}
K^{+}	2.05	various	-	-	1.1×10^{-16}	3.2×10^{-5}
π^+	17.0	$\mu^+ u_\mu$	100	-	1.8×10^{-16}	2.5×10^{-6}

Candidate particles for momentum scale calibration and abundances in Z decay

Sensitivity of mass-measurement to p-scale (α) depends on daughter masses and decay

$$m_{12}^2 = m_1^2 + m_2^2 + 2p_1p_2\left[(\beta_1\beta_2)^{-1} - \cos\psi_{12}\right]$$

Particle	Decay	$ < \alpha >$	$\max \alpha$	σ_M/M	$\Delta p/p$ (10 MZ)	$\Delta p/p$ (GZ)	PDG limit
J/ψ	$\mu^+\mu^-$	0.99	0.995	7.4×10^{-4}	13 ppm	1.3 ppm	1.9 ppm
K_S^0	$\pi^+\pi^-$	0.55	0.685	1.7×10^{-3}	1.2 ppm	0.12 ppm	38 ppm
Λ	$\pi^- p$	0.044	0.067	2.6×10^{-4}	3.7 ppm	0.37 ppm	80 ppm
D_0	$K^-\pi^+$	0.77	0.885	7.6×10^{-4}	2.4 ppm	0.24 ppm	30 ppm


Estimated momentum scale statistical errors ($p_X = 20 \text{ GeV}$)

Use of J/ψ would decouple \sqrt{s} determination from $M_{\rm Z}$ knowledge.

Opens up improved $M_{\rm Z}$ and $\Gamma_{\rm Z}$ measurements. (B-field map, alignment, material etc.)

Detector Calibration and Alignment

Clean ${
m e^+e^-}$ environment. But particle-based calibration at high \sqrt{s} has

Challenges

- cross-sections
- duty-cycle (power-pulsing)
- "push-pull"
- seismic tolerance
- thermal issues
- unprecedented precision goals

Part of the solution

Accelerator capable of "calibration runs" at the Z with reasonable luminosity. Z running is the most statistically effective way to calibrate the detector. May be essential to fully exploiting the ILC at all \sqrt{s} . Design this capability in!

Polarized Observables with Radiative Return Events

See 1908.11299 for details. Use jet polar angles to infer longitudinal boost, β .

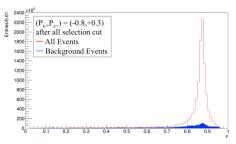
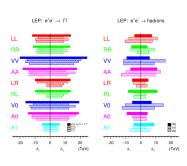


Figure 2: Reconstructed distribution of $x \equiv \frac{2|\beta|}{1+|\beta|}$ for the signal $e^+e^- \to \gamma Z$, $Z \to q\bar{q}$ and from background events that mimic this signal, at $\sqrt{s} = 250$ GeV with an integrated luminosity of 250 fb⁻¹.


Study indicates statistical uncertainty on A_e of 14×10^{-5} with full 2 ab⁻¹ of ILC250 running.

Very different systematics to Z-pole based A_{LR} measurement and accessible with data collected synergystically with Higgs production. Nevertheless, Z-pole running precision expected to be superior.

Two-Fermions and Four-Fermion Contact Interactions

See LEP2 studies with cross-sections and A_{FB} / (ILC adds A_{LR} , $A_{FB,LR}^f$)

$$\label{eq:left_eff} \mathcal{L}_{\text{eff}} = \frac{g^2}{(1+\delta) \varLambda_{\pm}^2} \sum_{i,j=L,R} \eta_{ij} \overline{e}_i \gamma_{\mu} e_i \overline{f}_j \gamma^{\mu} f_j,$$

LEP2

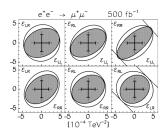
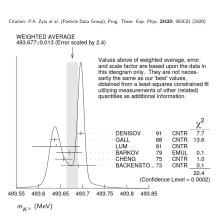


Fig. 1. Two-dimensional projections of the 95% C.L. allowed region (27) for $e^+e^- \rightarrow \mu^+\mu^-$ at $\mathcal{L}_{\rm int}=50$ fbo^1 and $\mathcal{L}_{\rm int}=50$ fbo^1. Note that the scales are different, $|P_e|=0.8$, $|P_{e}|=0.0$ (outer ellipse) and $|P_{e}|=0.6$ (inner ellipse). The solid crosses represent the 'one-parameter' bounds under the same conditions.

At ILC, can follow a more model independent approach. Example Ref. [14]. Polarization gives access to full 4-parameter space (LR,RL,LL,RR).

Current ILC projections - see [2] extend to 151 to 478 TeV for Λ in various models (driven by 8 ${\rm ab}^{-1}$ at 1 TeV).


Table of EWPO from arXiv:1908.11299

Quantity	Value	current	GigaZ			2250
		$\delta[10^{-4}]$	$\delta_{stat}[10^{-4}]$	$\delta_{sys}[10^{-4}]$	$\delta_{stat}[10^{-4}]$	$\delta_{sys}[10^{-4}]$
boson properties						
m_W	80.379	1.5	-	-		0.3°
m_Z	91.1876	0.23	-	-	-	-
Γ_Z	2.4952	9.4		4. °	-	-
$\Gamma_Z(had)$	1.7444	11.5		4. °	-	-
Z-e couplings						
$1/R_c$	0.0482	24.	2.	5 [†]	5.5	10 +
A_e	0.1513	139.	1	5. *	9.5	3. *
g_L^e	-0.632	16.	1.0	3.2	2.8	7.6
g_R^e	0.551	18.	1.0	3.2	2.9	7.6
Z - ℓ couplings						
$1/R_{\mu}$	0.0482	16.	2.	2. †	5.5	10 +
$1/R_{\tau}$	0.0482	22.	2.	4. †	5.7	10 +
A_{μ}	0.1515	991.	2.	5 *	54.	3. *
A_{τ}	0.1515	271.	2.	5. *	57.	3 *
g_L^{μ}	-0.632	66.	1.0	2.3	4.5	7.6
g_R^μ	0.551	89.	1.0	2.3	5.5	7.6
g_L^{τ}	-0.632	22.	1.0	2.8	4.7	7.6
g_R^{τ}	0.551	27.	1.0	3.2	5.8	7.6
Z-b couplings						
R_b	0.2163	31.	0.4	7. #	3.5	10 +
A_b	0.935	214.	1.	5. *	5.7	3 *
g_L^b	-0.999	54.	0.32	4.2	2.2	7.6
g_R^b	0.184	1540	7.2	36.	41.	23.
Z-c couplings						
R_c	0.1721	174.	2.	30 #	5.8	50 +
A_c	0.668	404.	3.	$5^* \oplus 5^\#$	21.	3 *
g_L^c	0.816	119.	1.2	15.	5.1	26.
g_R^c	-0.367	416.	3.1	17.	21.	26.

Table 9: Projected precision of precision electroweak quantities expected from the ILC. Precisions are given as relative errors $(\delta A = \Delta A/A)$ in units of 10^{-4} . Please see the text of Appendix A for further explanation of this table.

Charged Kaon Mass

A long-standing example of inconsistent precision measurements. As yet not resolved.

An example of something, not so far from being fundamental with a big inconsistency. Accuracy is as important as precision. Important to measure particles with different methods if there are actually residual misunderstood systematics (examples top, W, Higgs, Z).

With ILC detectors and precision momentum-scale calibration, ILC should be able to help resolve this! This would also help lots of D, B masses etc.

Maybe worth doing a careful study of how to improve this with colliders.

Hadronization Systematics

How does a W, Z, H, t decay hadronically?

Models like PYTHIA, HERWIG etc have been tuned extensively to data. Not expected to be a complete picture.

Inclusive measurements of identified particle rates and momenta spectra are an essential ingredient to describing hadronic decays of massive particles. ILC could provide comprehensive measurements with up to 1000 times the

published LEP statistics and with a much better detector with Z running. High statistics with W events.

Why?

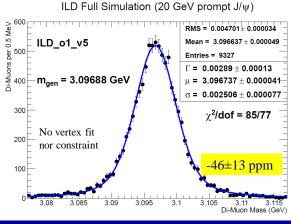
Measurements based on hadronic decays, such as hadronic mass, jet directions underlie much of what we do in energy frontier experiments.

Key component of understanding jet energy scales and resolution.

Important to also understand flavor dependence: u-jets, d-jets, s-jets, c-jets, b-jets, g-jets.

Full Simulation + Kalman Filter

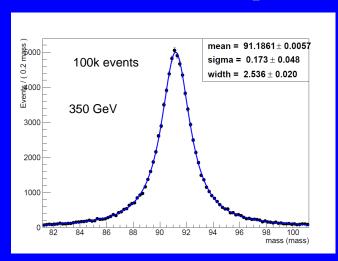
10k "single particle events"


 $\sqrt{s}=m_Z$

Work in progress – likely need to pay attention to issues like energy loss model and FSR.

Preliminary statistical precision similar.

More realistic material, energy loss and multiple


scattering.

Need consistent material model in simulation AND reconstruction

Empirical Voigtian fit

Can control for p-scale using measured di-lepton mass

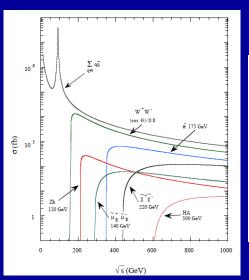
This is about 100 fb⁻¹ at ECM=350 GeV.

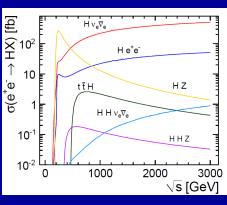
Statistical sensitivity if one turns this into a Z mass measurement (if p-scale is determined by other means) is

1.8 MeV / √N

With N in millions.

Alignment?
B-field?
Push-pull?
Etc...

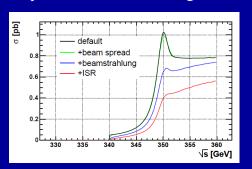

XFEL at DESY

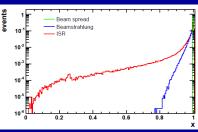


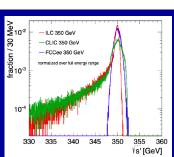
Experimentation with ILC

- Physics experiments with e⁺e⁻ colliders are very different from a hadron collider.
- Experiments and detectors can be designed without the constraints imposed by triggering, radiation damage, pileup.
- All decay channels can often be used (not only $H\rightarrow 4l$ etc)
- Can adjust the initial conditions, the beam energy, polarize the
 electrons and the positrons, and measure precisely the absolute
 integrated luminosity.
- No trigger needed.
- Last but not least theoretical predictions can be brought under very good control.

The e⁺e⁻ Landscape




Cross-sections are typically at the pb level.


Luminosity Spectrum

 Experimentally accessible measurements are convolved with effects of ISR, beam spread and beamstrahlung

Luminosity sprectrum should be controlled well at ILC (to < 0.2% differentially using Bhabhas)

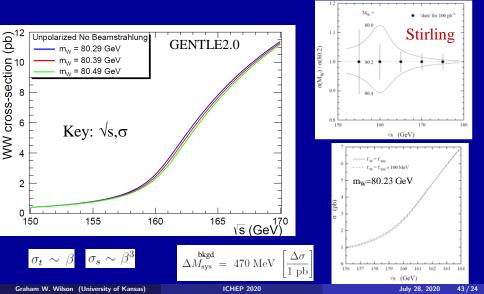
m_w Prospects

- 1. Polarized Threshold Scan
- 2. Kinematic Reconstruction
- 3. Hadronic Mass

Method 1: Statistics limited.

Method 2: With up to 1000 the LEP statistics and much better detectors. Can target factor of 10 reduction in systematics.

Method 3: Depends on di-jet mass scale. Plenty Z's for 3 MeV.


2	ΔM_W [MeV]	LEP2	ILC	ILC	ILC
_	\sqrt{s} [GeV]	172-209	250	350	500
	\mathcal{L} [fb ⁻¹]	3.0	500	350	1000
	$P(e^{-})$ [%]	0	80	80	80
	$P(e^{+})$ [%]	0	30	30	30
	beam energy	9	0.8	1.1	1.6
	luminosity spectrum	N/A	1.0	1.4	2.0
	hadronization	13	1.3	1.3	1.3
	radiative corrections	8	1.2	1.5	1.8
	detector effects	10	1.0	1.0	1.0
	other systematics	3	0.3	0.3	0.3
	total systematics	21	2.4	2.9	3.5
	statistical	30	1.5	2.1	1.8
	total	36	2.8	3.6	3.9

1	$\Delta M_W \; [{ m MeV}]$	LEP2	ILC	ILC
1	\sqrt{s} [GeV]	161	161	161
	\mathcal{L} [fb ⁻¹]	0.040	100	480
	$P(e^{-})$ [%]	0	90	90
	$P(e^{+})$ [%]	0	60	60
	statistics	200	2.4	1.1
	background		2.0	0.9
	efficiency		1.2	0.9
	luminosity		1.8	1.2
	polarization		0.9	0.4
	systematics	70	3.0	1.6
	experimental total	210	3.9	1.9
	beam energy	13	0.8	0.8
	theory	-	(1.0)	(1.0)
	total	210	4.0	2.1

3	ΔM_W [MeV]	ILC	ILC	ILC	ILC
	\sqrt{s} [GeV]	250	350	500	1000
	\mathcal{L} [fb ⁻¹]	500	350	1000	2000
	$P(e^{-})$ [%]	80	80	80	80
	$P(e^{+})$ [%]	30	30	30	30
	jet energy scale	3.0	3.0	3.0	3.0
	hadronization	1.5	1.5	1.5	1.5
	pileup	0.5	0.7	1.0	2.0
	total systematics	3.4	3.4	3.5	3.9
	statistical	1.5	1.5	1.0	0.5
	total	3.7	3.7	3.6	3.9

See Snowmass document for more details Bottom-line: 3 different methods with prospects to measure mW with error < 5 MeV

m_W from cross-section close to threshold

Example Polarized Threshold Scan

\sqrt{s} (GeV)	L (fb ⁻¹)	f	$\lambda_{e^{-}}\lambda_{e^{+}}$	N _{II}	N _{Ih}	N _{hh}	N_{RR}
160.6	4.348	0.7789	-+	2752	11279	12321	926968
		0.1704	+-	20	67	158	139932
		0.0254	++	2	19	27	6661
		0.0254		21	100	102	8455
161.2	21.739	0.7789	-+	16096	67610	73538	4635245
		0.1704	+-	98	354	820	697141
		0.0254	++	37	134	130	33202
		0.0254		145	574	622	42832
161.4	21.739	0.7789	-+	17334	72012	77991	4639495
		0.1704	+-	100	376	770	697459
		0.0254	++	28	104	133	33556
		0.0254		135	553	661	42979
161.6	21.739	0.7789	-+	18364	76393	82169	4636591
		0.1704	+-	81	369	803	697851
		0.0254	++	43	135	174	33271
		0.0254		146	618	681	42689
162.2	4.348	0.7789	-+	4159	17814	19145	927793
		0.1704	+-	16	62	173	138837
		0.0254	++	10	28	43	6633
		0.0254		46	135	141	8463
170.0	26.087	0.7789	-+	63621	264869	270577	5560286
		0.1704	+-	244	957	1447	838233
		0.0254	++	106	451	466	40196
		0.0254		508	2215	2282	50979

Illustrative example of the numbers of events in each channel for a 100 ${\rm fb}^{-1}$ 6-point ILC scan with 4 helicity configurations

Kinematic Reconstruction in Fully Leptonic Events

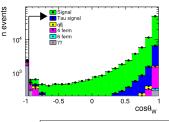
See Appendix B of Hagiwara et al., Nucl. Phys. B. 282 (1987) 253 for full production and decay 5-angle reconstruction in fully leptonic decays as motivated by TGC analyses.

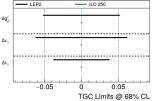
The technique applies energy and momentum conservation. One solves for the anti-neutrino 3-momentum, decomposed into its components in the dilepton plane, and out of it. Additional assumptions are:

- the energies of the two W's are equal to E_{beam} , so $m(W^+) = m(W^-)$.
- ullet a specified value for $M_{
 m W}$

$$\vec{\mathbf{p}}_{\overline{\nu}} = a\,\vec{\mathbf{l}} + b\,\vec{\mathbf{l}}' + c\,\vec{\mathbf{l}} \times \vec{\mathbf{l}}'$$

By specifying, $M_{\rm W}$, one can find a, b and c^2 , so there are two solutions.


The alternative pseudomass technique is more appropriate for a $M_{\rm W}$ measurement. It does not assume $M_{\rm W}$, but sets c=0, similarly yielding two solutions, (a_+, b_+) and (a_-, b_-) , leading to PseudoMass(+) and PseudoMass(-) estimators per event.


Higher Energy: Triple Gauge Couplings (WW γ , WWZ)

Many 4f processes besides W^+W^- . "Single-W" processes, $e^+e^- \to W~e~\nu_e$, very important. Can disentangle the beam polarizations, P_{e^-} and P_{e^+} , and constrain residual imperfect spin-flip, using such processes where σ_{LL} or $\sigma_{RR} \neq 0$.

	$250 \text{ GeV} \\ W^{+}W^{-}$	$350 \text{ GeV} \\ W^+W^-$	$500 \text{ GeV} \\ W^+W^-$	$1000 \text{ GeV} \\ W^+W^-$
g_{1Z}	0 .062	0.033	0.025	0.0088
κ_A λ_A	0.096 0.077	0.049 0.047	0.034 0.037	0.011 0.0090
$\rho(g_{1Z}, \kappa_A)$	63.4	63.4	63.4	63.4
$\rho(g_{1Z}, \lambda_A)$	47.7	47.7	47.7	47.7
$\rho(\kappa_A, \lambda_A)$	35.4	35.4	35.4	35.4

Table 13: Projected statistical errors, in %, for $e^+e^- \to W^+W^-$ measurements input to our fits. The errors are quoted for luminosity samples of 500 fb⁻¹ divided equally between beams with -80% electron polarisation and +30% positron polarisation and brams with +80% electron polarisation and -30% positron polarisation. Please see the text of Appendix B for further explanation of this table.

3-parameter fits based on full simulation studies and their extrapolation with ILD. Clearly higher energy is better especially given the γ scaling of luminosity. Already with ILC250 (2 ab⁻¹), expect 0.05% precision, compared to 5% precision for a LEP2 experiment. No comparable hadron collider results available. See thesis by Robert Karl (DESY) with work on a multi-channel global fit including correlations.

Polarization Observables

At a polarized ${
m e^+e^-}$ collider, $A_{
m e}$ is given by the left-right asymmetry in the total rate for Z production,

$$A_e = A_{LR} \equiv rac{\sigma_L - \sigma_R}{\left(\sigma_L + \sigma_R
ight)} \; ,$$

where σ_L and σ_R are the cross section for 100% polarized $e_L^-e_R^+$ and $e_R^-e_L^+$ initial states. For other asymmetries, beam polarization can also play a role. These quantities are measured from the left-right forward-backward asymmetry

$$A_{FB,LR}^f \equiv \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} \ ,$$

where, again, L and R refer to states of 100% polarization. At the tree level,

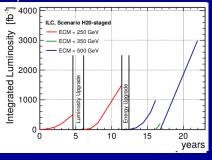
$$A_{FB,LR}^f = \frac{3}{4} A_f \ .$$

For unpolarized/polarized collider, the A_f values can again be obtained from quantities such as the forward-backward asymmetry using charge-identified fermion $\frac{d\sigma}{d\cos\theta}$

$$A_{FB}^f \equiv \frac{\left(\sigma_F - \sigma_B\right)}{\left(\sigma_F + \sigma_B\right)} \ = \frac{\left[\left(\sigma_F\right)_L + \left(\sigma_F\right)_R\right] - \left[\left(\sigma_B\right)_L + \left(\sigma_B\right)_R\right]}{\left[\left(\sigma_F\right)_L + \left(\sigma_F\right)_R\right] + \left[\left(\sigma_B\right)_L + \left(\sigma_B\right)_R\right]} = \frac{3}{4}A_eA_f \ ,$$

ILC Physics

- Physics studies at future e⁺e⁻ colliders.
- Seeds were planted in the mid-80's.
- Now a vast literature.
- 3 recent publications.
 - K. Fujii et al
 - arXiv:1506.05992
 - G. Moortgat-Pick et al.,
 - arXiv:1504.01726
 - H. Baer et al,
 - arXiv:1306.6352


See references slide containing more recent documents with consistent assumptions

IIIu-ov	5.			
Topic	Parameter	Initial Phase	Full Data Set	units
Higgs	m_h	25	15	MeV
	g(hZZ)	0.58	0.31	%
	g(hWW)	0.81	0.42	%
	$g(hb\overline{b})$	1.5	0.7	%
	g(hgg)	2.3	1.0	%
	$g(h\gamma\gamma)$	7.8	3.4	%
		1.2	1.0	%, w. LHC results
	$g(h\tau\tau)$	1.9	0.9	%
	$g(hc\overline{c})$	2.7	1.2	%
	$g(ht\overline{t})$	18	6.3	%, direct
		20	20	$\%$, $t\bar{t}$ threshold
	$g(h\mu\mu)$	20	9.2	%
	g(hhh)	77	27	%
	Γ_{tot}	3.8	1.8	%
	Γ_{invis}	0.54	0.29	%, 95% conf. limit
Top	m_t	50	50	$MeV (m_t(1S))$
	Γ_t	60	60	MeV
	$\Gamma_t \ g_L^{\gamma} \ g_R^{\gamma} \ g_L^{Z} \ g_R^{Z} \ F_2^{\gamma} \ F_2^{\gamma}$	0.8	0.6	%
	g_R^{γ}	0.8	0.6	%
	g_L^Z	1.0	0.6	%
	g_R^Z	2.5	1.0	%
	F_2^{γ}	0.001	0.001	absolute
	F_2^Z	0.002	0.002	absolute
W	m_W	2.8	2.4	MeV
	g_1^Z	8.5×10^{-4}	6×10^{-4}	absolute
	κ_{γ}	9.2×10^{-4}	7×10^{-4}	absolute
	λ_{γ}	7×10^{-4}	2.5×10^{-4}	absolute
Dark Matter	EFT A: D5	2.3	3.0	TeV, 90% conf. limit
	EFT Λ : D8	2.2	2.8	TeV, 90% conf. limit

ILC Parameters / Running Scenarios

J. Brau et al., arXiv: 1506.07830

Updated in 1903.01629

- Baseline scenario for study
- Run plan flexible will evolve informed by future developments
- Future upgrade to 1 TeV and potentially beyond
- Options for dedicated running with polarized beams at Zpole (100 fb⁻¹) and WW threshold (500 fb⁻¹).

	integrated luminosity with $sgn(P(e^{-}), P(e^{+})) =$				
	(-,+)	(+,-)	(-,-)	(+,+)	
\sqrt{s}	[fb ⁻¹]	[fb ⁻¹]	[fb ⁻¹]	[fb ⁻¹]	
250 GeV	1350	450	100	100	
350 GeV	135	45	10	10	
500 GeV	1600	1600	400	400	

6200 fb⁻¹ total

200 fb⁻¹ at √s≈350 GeV