Disclaimer

IFIC INSTITUT DE FÍSICA CORPUSCULAR

- Slides on construction. Still few references and numbers are missing...
 - Quoted as XXX or ??
 - WORK IN PROGRESS.
- Preliminary labels to be added in most plots !

Heavy quark production in high energy electron positron collisions

Adrián Irles*[†], R. Pöschl*, F. Richard*

[†] IFIC (UV / CSIC)

ICHEP 2020 | PRAGUE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS VIRTUAL CONFERENCE

28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

Outline of the talk

- What do we want to measure and why?
- ► Where? International Linear Collider, ILC250, and the International Large Detector ILD
- **top/b/c-quark electroweak couplings** extracted from **differential cross section** measurements
 - Experimental prospects based on full simulation and full systematic uncertainty estimation

ILC physics program

- ILC is a Linear Collider Project, to be hosted in Japan.
 - Matured technollogy: TDR (accelerator + detectors) since 2013.
- All Standard Model particles within reach of planned linear colliders
- High precision tests of Standard Model over wide range to detect onset of New Physics
- Machine settings can be "tailored" for specific processes
 - Centre-of-Mass energy
 - Beam polarisation (straightforward at linear colliders)
- Background free searches for BSM through beam polarisation

current ILC run plan: (basis of projections)

250 GeV: 2 ab-1, 500 GeV: 4ab-1, 350 GeV: 0.2 ab-1

also, runs at 91 GeV (5B Z's) and 1000 GeV (8 ab-1)

Lupgrade: 5 Hz \rightarrow 10 Hz; Eupgrade: extend the linac

M. Peskin Snowmass (EF Workshop 21st July 2020)

See XXX talk for more information on Linear Colliders and ILC

ILD highlights

ILD snapshot

High angular coverage with minimum material budget and PID (TPC)

See T. Tanabe's talk on ILD

- ► ILC experiments, as the **ILD**, will provide excellent:
 - Beam IP constraint
 - Secondary vertex separation and excellent flavour tagging
 - Tracking efficiency (>99%)
- Particle Flow optimized detector with high granularity calorimeters (>10⁸ cells!)

Motivation: LEP/SLC tension

- Current LEP & SLC best sin² θ^l_{eff}, measurements show tension
 - This measurement is the one with **largest tension with the SM fit.**
 - Most precise single Individual determination of $sin^2 \theta^l_{eff}$

from SLC \rightarrow Left-right asymmetry of leptons

• Most precise single Individual determination of $sin^2 \theta'_{eff}$

from LEP \rightarrow forward backward assymetry (b-quark)

Heavy quark effect, effect on all quarks/fermions, no effect at all?

Two fermion processes

Differential cross section for (relativistic) di-fermion production

$$\frac{d\sigma}{d\cos\theta} (e_L^- e_R^+ \rightarrow f\bar{f}) = \Sigma_{LL} (1 + \cos\theta)^2 + \Sigma_{LR} (1 - \cos\theta)^2$$
$$\frac{d\sigma}{d\cos\theta} (e_R^- e_L^+ \rightarrow f\bar{f}) = \Sigma_{RR} (1 + \cos\theta)^2 + \Sigma_{RL} (1 - \cos\theta)^2$$

• The helicity amplitudes Σ_{μ} , contain the couplings g_{L}/g_{R} (or Form factors or EFT factors)

For an EFT review see M. Perelló's talk and arxiv:1907.10619

- Left/right asymmetries (characteristic for each fermion)
- Many BSM scenarios (i.e. Randal Sundrum, compositeness, Higgs unification models...) predict heavy resonances coupling to the (t,b) doublet and also lighter fermions (i.e. c/s quarks)
 - BSM resonances tend to couple to the right components.

Only beam polarisation allows inspection of the 4 helicity amplitudes for all fermions

Observables

Quark (fermion) electroweak couplings can be inferred from cross section, Rq and forward backward asymmetry AFB observables.

These observables have been measured at LEP/SLC at the Z-pole

- no access to the γ or Z/γ interferences
- Moderated quark tagging and charge measurements.
- Also moderated angular acceptance of the detectors: drop at $\cos(\theta) \sim 0.6$

Cross sections

Irène Joliot-Curie

$e^+e^- \rightarrow t\bar{t}:$ 500 GeV

Channel	$\sigma_{unpol.}$ [fb]	$\sigma_{-,+}$ [fb]	$\sigma_{+,-}$ [fb]
$t\bar{t}$	572	1564	724
$\mu^+\mu^-$	456	969	854
$\sum_{q=u,d,s,c} q\bar{q}$	2208	6032	2793
$b\bar{b}$	372	1212	276
γZ^0	11185	25500	19126
$W^{+}W^{-}$	6603	26000	150
Z^0Z^0	422	1106	582
$Z^{0}W^{+}W^{-}$	40	151	8.7
$Z^{0}Z^{0}Z^{0}$	1.1	3.2	1.22
Single t for $e^+e^- \rightarrow e^-\bar{\nu}_e t\bar{b}$ [11]	3.1	10.0	1.7

352 GeV (unpol)

450 fb
25.2 pb
11.5 pb 865 fb

$e^+e^- \rightarrow b\bar{b}$: 250 GeV

Channel	σunpol fb	σL fb	σR fb
bb	1756	5629	1394
γbb (Z return)	7860	18928	12512
ZZ hadronic with bb	196	549	236
HZ hadronic with bb	98	241	152

 $e^+e^- \rightarrow c\bar{c}$: 250 GeV $\sigma(P_{e^-} = -1, P_{e^+} = +1) \approx 8518 \,\text{fb}$ $\sigma(P_{e^-} = +1, P_{e^+} = -1) \approx 3565 \,\text{fb}$ $\sigma_{unpol.} \approx 3020 \,\text{fb}$

LCWS 2019

7

Slide borrowed from R. Poeschl (EF04 Snowmass process)

Top-quark reconstruction

- Tops decay before hadronizing.
- Top-quark charge and direction information carried by its decay products
 - the b-jets (b-jet charge determination)
 - The W-boson product decays (leptonic channel and also c-decays !)

A. Irles,

30th July 2020 | **10**

ILD

Flavor tagging and charge measurement

Flavor tagging

- Indispensable for analysis with final state quarks
- Quark charge measurements
 - Important for top-quark studies but Indispensable for ee→ bb/cc/ss...

Charge measurements:

- Vtx charge and Kaon Identification
- High purity → control of the migrations (double tagging)
- Future detectors can base their entire measurements on double Tagging and vertex charge
 - LEP/SLC had to include single tags and semileptonic events

A. Irles,

IP

30th July 2020 | 11

Flavor tagging and charge measurement at ILD

12

- Individual efficiency for b-tag and charge measurements using vertex and Kaon charge
 - B-tagging efficiency larger than 65% (with minimal contamination from other quark flavors <1%)
 - charge measurement has >30% Efficiency and gives the correct charge with 80-90% probability (limited by B0 oscillations)
 - Particle ID thanks to the TPC

Top-quark: Reconstruction efficiencies

$e_L^- e_R^+ \to t\bar{t}$ at 500 GeV					
General selection cuts	IDR-L	IDR-S			
Isolated Lepton	92.1%	92.1%			
$btag_1 > 0.8 \text{ or } btag_2 > 0.3$	81.2%	81.1%			
Thrust < 0.9	81.2%	81.1%			
Hadronic mass	78.2%	78.2%			
Reconstructed m_W and m_t	73.4%	73.4%			
t quark polar angle spectrum	n				
$\gamma_t^{had.} + \gamma_t^\ell > 2.4$	62.2%	61.8%			
$ p_{R,had} > 15 \mathrm{GeV}$	34.5%	33.9%			
" $t\bar{t}$ identification"	30.6%	30.2%			
b quark polar angle spectrum					
No additional cuts					

$e_R e_L \rightarrow t t$ at 500 GeV					
IDR-L	IDR-S				
94.1%	94.0%				
84.9%	84.8%				
84.9%	84.8%				
82.2%	82.3%				
77.6%	77.5%				
n					
64.1%	64.1%				
n					
10.8%	10.3%				
	IDR-L 94.1% 84.9% 82.2% 77.6% a 64.1% n 10.8%				

rène Joliot-Curie

T . FOO C M

Total cross section

- ► Typical selection efficiencies fo the 75%
- Independent of beam polarisation

Differential cross section

- Differences for beam polarisations
- Left hand polarisation more vulnerable to migrations
- Requires information from the hadronic state
- Vertex / Kaon as in the bb-case

Top quark: results (1)

- Semi-leptonic channel
- Left polarisation
 - B-jet carries top direction information
 - Very useful for the hadronic channel!
- Right polarisation

A. Irles,

 W-carries the top direction information → lepton charge and c/s tagging become important

30th July 2020

14

Integrated Luminosity 4 fb⁻¹

rène Joliot-Curie

- Exact reproduction of generated spectra
 - Statistical precision on cross section: ~0.1%
 - Statistical precision on A FB : ~0.5%
- Can expect that systematic errors will match statistical precision (but needs to be shown)

Top quark: results (2)

ILD-Note-2019-007

30th July 2020 |

15

- e+e- collider way superior to LHC (\sqrt{s} = 14 TeV)
- Final state analysis at FCCee (polarisation)
 - Also possible at LC => Redundancy
- Two remarks:
 - 500 GeV is nicely away from QCD Matching regime

Less systematic uncertainties

• The determination of axial form factors highly benefit from higher energies

See M. Perelló's talk to interpret this plot in terms of EFT Wilson coefficients.

A. Irles,

b/c-quarks: reconstruction efficiencies

- 2 back-to back jets topology
- Main source of systematics in LEP/SLC:
 - Uncertainties related to tagging efficiency
 - The tagging efficiency needs to be measured (not MC estimated) to reach the per mil level of accuracy.

Solution: double tagging (and charge measurement) → ILD offers high efficiency and purity (see slide 12)

- New systematics when running far from the Z-pole:
 - Beam polarisation
 - Event selection → background from radiative return events and WW/ZZ/HZ

Polarization	$\sigma_{e^{-}e^{+} \rightarrow q\overline{q}}(E_{\gamma} < 35 GeV)$ [fb]			$\sigma_{e^-e^+ \to q\overline{q}}(E_{\gamma} > 35 GeV)$ [fb]		
	$b\overline{b}$	$c\overline{c}$	$q\overline{q} (q = uds)$	$b\overline{b}$	$c\overline{c}$	$q\overline{q} (q = uds)$
$e_L e_R^+$	5677.2	8518.1	18407.3	20531.4	18363.8	57651.3
$e_R^- e_L^+$	1283.2	3565.0	5643.5	12790.8	11810.8	36179.5

qq signal

Rad. Ret. BKG

Arxiv:1709.04289, ILD Paper in progress

Up to x10 signal

b/c-quarks: reconstruction efficiencies

Arxiv:1709.04289, ILD Paper in progress

Other BKG

- **Double tagging (and charge measurement) techniques require:**
 - Preselection with similar efficiency for all quark flavours
 - Preselection that cut out the main backgrounds
- Require dedicated studies with full simulations: done at ILD for b and c-quark
 - Profits from a highly efficient ISR photon identification (~XX %)

qq signal

Efficiency of selection for $e_L^+ e_R^+ \rightarrow X$ [%]							
	$X = q\overline{q} \left(E_{\gamma} < 35 GeV \right)$		$X = q\overline{q} (E_{\gamma} < 35 GeV) \qquad X = q\overline{q} (E_{\gamma} > 35 GeV)$				
	$b\overline{b}$	$c\overline{c}$	$q\overline{q}$ (uds)	$q\overline{q}$ (udscb)	X = ZZ	X = WW	X = HZ
No cuts	100%	100%	100%	100%	100%	100%	100
Cut 1	84.5%	84.9%	86.4%	6.7%	12.3%	11.7%	12.6
+ Cut 2	82.8%	82.0%	80.3%	1.2%	12.1%	11.1%	11.8
+ Cut 3	72.1%	71.7%	71.3%	0.7%	2.5%	5.0%	4.5
+ Cut 4	71.5%	71.1%	70.7%	0.7%	1.6%	3.6%	3.8

Rad. Ret. BKG

b/c-quarks: reconstruction efficiencies

- After the preselection, we apply the b/c tagging including charge measurement for differential cross sections.
 - Efficiencies for inclusive cross section are ~x2 larger

b/c-quarks: Results (1)

B-quark case

Irène Joliot-Curie

- Full simulation studies for Rb and AFBb
- Full study of uncertainties (ILD note in progress)
 - Statistics (and migrations)
 - Sytematics: tagging eff, correlations, beam polarisation,
 - bkg estimation,...

HERE GOES A TABLE WITH ALL UNCERTAINTIES BREAKDOWN Per mile accuracy!

b/c-quarks: Results (2)

c-quark case

- Similar precisions (work in progress)
- Lower tagging efficiency compensated by higher statistics for both polarisations.
- Kaon Identification becomes the most promising channel for the charge measurement

b/c-quarks: Results (3)

Prospects for couplings determination are order of magnitude better than at LEP

- Resolution of the LEP/SLC anomaly
- Full disentangling of helicity structure for all fermions only possible with polarised beams!!

New resonances

A. Irles, **30th July** 2020 | **21**

b/c-quarks: Results (4) Potential for BSM discoveries

Expected number of standard deviations for different **RS/compositeness BSM scenarios** when determining the different EW couplings to c- and b-quark at **ILC250** (with GigaZ input).

Many BSM predict deviations only for the right couplings

BEAM POLARISATION is crucial

MODELS:

- for Djouadi et al we assume mZ'= 3 TeV
- for the Peskin et al we assumed two RS SO(5) scenarios labelled as Peskin 4 and Peskin 5
- for Hosotani et al, we assumed mZ'= 8 TeV (three resonances) and not mixing at Z-pole

Power of discovery of new resonances mZ' ~ O(20-30) TeV at ILC250

A. Irles, 30th July 2020 | 22

Summary / conclusions

- ► ILC is ideally suited for precision measurements of two-fermion final states
- ▶ ILC will have the answer whether new physics acts on heavy doublet (t,b) only or on all fermions
 - Will/would probe helicity structure of electroweak fermion couplings over at least one order of magnitude in energy (Z-Pole -> ~1 TeV)
- Achievable experimental precisions ~0.1 1%
 - Demanding analysis requiring the full detector capabilities: Vertex charge and particle ID, PFO for final state jets, etc
 - Full systematic studies done (b-quark) or in progress (top and charm)
- Effects may become already visible at 250 GeV stage for b quark and c quarks (and other light fermions)
 - Amplification of effects at higher energies
 - Clear and unique pattern thanks to polarised beams
- Active phenomenological studies in terms of global analyses (EFT) and concrete models (not covered in this talk)
- Theory challenges (not covered in this talk)
 - Need at least NLO electroweak predictions (and MC programs) for correct interpretation of results

Thanks for your attention.

A. Irles, 30th July 2020 | 24

Back-up slides

► WORK IN PROGRESS

A. Irles, 30th July 2020 | 25

a BSM example: GUT Inspired Grand Higgs Unificaton Model

30th July 2020 |

26

rène Joliot-Curi

- Model parameter is Hosotani angle θ_{H} yielding the Higgs-Potential as consequence of Aharanov-Bohm Phase in 5th dimension
- Model defined in Randall-Sundrum warped extra dimensions
 - KK excitations of gauge bosons and new bosons modify fermion couplings
- Predictions for ILC
 - $m_{\rm \tiny KK}$ = 13 TeV and $\theta_{\rm \tiny H}$ = 0.1
- Deviations from SM of the order of a few %
 - Effects measurable already at 250 GeV
 - · Effects amplified by beam polarisations
 - Effects for tt, bb and cc (and other light fermions)
- One concrete example for importance to measure full pattern of fermion couplings

A. Irles,

setingFull pattern only available with beam polarisation