The ILD Software Tools and Detector Performance.

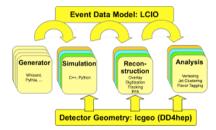
ICHEP 2019 Prague, Czech Republic

Rémi Ete, on behalf of the ILD software group

DESY

July 31, 2020

- ILC software tools
- 2 ILD detector and event reconstruction
- **3** The IDR Monte Carlo mass production
- 4 Detectors performances
- **5** Summary and outlook

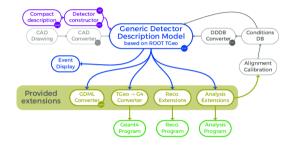

The iLCSoft software stack

https://github.com/iLCSoft

- Software stack of the ILC experiment
- Nowadays used by many other experiments/collaborations
 → e.g: CLICdp, CEPC, CALICE, LCTPC, EU-Telescope
- Maintained by FLC @ DESY and CLICdp @ CERN

Main components

- DD4hep: Geometry description for simulation (Geant4) and reconstruction
- LCIO: Linear Collider IO and Event Data Model (EDM) (2003)
- Marlin: Reconstruction framework based on LCIO
- PandoraPFA: Particle flow reconstruction for Linear Colliders (LCContent)



DD4hep: detector geometry package

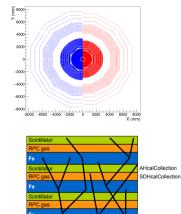
https://github.com/AIDASoft/DD4hep

- Generic detector description for HEP
- Single complete description source for
 - Simulation
 - Reconstruction
 - Analysis
- DDG4 for simulation
 - Gateway to Geant4
 - Fully customizable: input / output, Geant4 actions, physics list, etc...
- DDRec for reconstruction
 - High level view of detectors: # layers, thicknesses, dimensions, etc...
 - Tracking surfaces, material properties, cellID converter

Philosophy: single source of geometry, different interfaces

The ILD detector description

Optimizing ILD: ILD-L vs. ILD-S


ILD detector(s) described in detail:

- Materials, extents, sensitive volumes, services, etc...
- ILD-S (small TPC radius) vs. ILD-L (large TPC radius) Hybrid simulation with 4 calorimeter options:

Detector	Si-ECal	Sc-Ecal	AHCal	SDHCal
ILD_I5_o1_v02	х		х	
ILD_I5_o2_v02	х			×
ILD_I5_o3_v02		х	х	
ILD_I5_04_v02		х		х

- Simulate 4 options, reconstruct 1 option
- Save CPU time and minimize storage

See detailed talk on the ILD detector by T. Tanabe

Scintillator

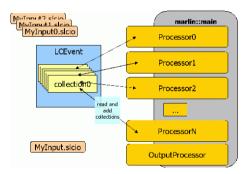
PC das

LCIO: the Linear Collider event data model

https://github.com/iLCSoft/LCIO

- Data handling for all steps in HEP workflow:
 - Generator, simulation, reconstruction, analysis
- Standalone IO library:
 - Binary data format (XDR), ZLIB compression
 - Schema evolution (block versioning)
 - Extensible and backward compatible format
 - Endianness agnostic (big / little endian)
 - Recently re-implemented for multi-threading usage
- Very robust: 20 years of usage
- Handles object relations
 - Weighted link between two objects
 - Very convenient for MC \leftrightarrow Reco navigation

The Marlin framework


https://github.com/iLCSoft/Marlin

Standard HEP event processing framework

- Based on LCIO event data model
- Reconstruction and analysis
- Handles histogramming and conditions data

The Marlin framework

- Describes a task list (Processor) to execute
- Read events and process them through the chain
- Each Processor read and/or create new collections in the event
- Standard sequential event processing pipeline in HEP

The IDR Monte Carlo mass production

The production system

DIRAC system

- Job management, file catalog, ...
- Transformation system for productions
- Written in Python

iLCDirac system

- DIRAC extension for ILC/CALICE VOs
- Specific to iLCSoft applications
- Developed and operated by CLIC @ CERN

Main transformations:

- GenSplit: split generator files
- 2 Simulation: runs ddsim

- **3** OverlyBKG: prepare reconstruction for bkg overlay
- 4 Reconstruction: runs Marlin
- 5 DSTMerge: merge DST files after reconstruction

The IDR Monte Carlo mass production

Dataset and statistics

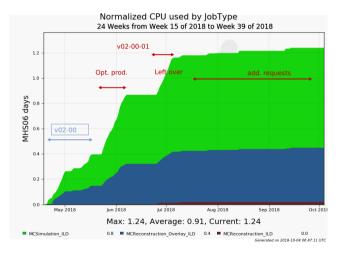

	event class	description	events processed
	2f	two fermion final states	$60.0 imes10^{6}$
	4f	four fermion final states	$22.6 imes10^6$
	5f	five fermion final states	$4.01 imes10^6$
$ullet$ Storage $\sim 1~PB$	6f	six fermion final states	$13.8 imes10^6$
	aa_4f	two fermion by $\gamma\gamma$ interaction	$1.63 imes10^6$
• Luminosity $\sim 500~{ m fb}^{-1}$	higgs	higgs process	$3.97 imes10^6$
	np	new physics process	$3.25 imes10^6$
• <i>E_{cms}</i> = 500 GeV	aa_lowpt	$\gamma\gamma ightarrow$ hadrons background	$2.50 imes10^{6}$
	seeablepairs	e^+e^- -pair background	$1.00 imes 10^5~{ m BXs}$
	calibration	single particle, $qar{q}$ events	$27.71 imes10^{6}$
	6f(WW)	dedicated 6f sample at $E_{cms}=1~TeV$	$1.75 imes10^{6}$

Table: Number of Monte Carlo events produced

The IDR Monte Carlo mass production

Cummulative CPU

R. Ete — DESY — July 31, 2020 — Page 10

https://github.com/iLCSoft/ILDConfig

- Background overlay
- Digitization
- Tracking
- Particle Flow
- High level reconstruction

Ittps://github.com/iLCSoft/ILDConfig

• Overlay beam induced background with different probabilities

- Background overlay
- Digitization
- Tracking
- Particle Flow
- High level reconstruction

- Currently 1 BX overlaid
- Primary vertex of overlaid events are smeared

BKG source	Probability	Vertex z offset (mm)	Vertex z sigma (mm)
$\gamma\gamma$	0.350	0	0.1698
$e^+\gamma$	0.243	+0.0422	0.186
$e^-\gamma$	0.246	-0.0422	0.186
e ⁺ e ⁻	0.211	0	0.1968
e ⁺ e ⁻ pair	1	0	0

Ittps://github.com/iLCSoft/ILDConfig

Calorimeter digitization

- Apply energy calibration constants
- Emulate noisy / inefficient channels
- Treatment for timing
- Corrections for gap hits

Tracking detectors digitization

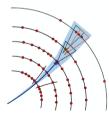
V resolution Detector U resolution Vertex 3 µm $\overline{3} \mu m$ SIT $5 \mu m$ $5 \mu m$ FTD pixel $3 \mu m$ $3 \mu m$ FTD strip $7 \mu m$ $7 \mu m$ $R-\phi$ resolution Z resolution TPC 0.05 mm 0.4 mm

Background overlay

- Digitization
- Tracking
- Particle Flow
- High level reconstruction

Ittps://github.com/iLCSoft/ILDConfig

Background overlay

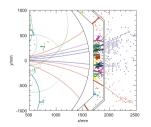

- Digitization
- Tracking
- Particle Flow
- High level reconstruction

ILD track reconstruction performed in 3 independent steps

- $\bullet~VTX$ and SIT: triplet seed +~extrapolation to next layers
- FTD: cellular automaton for track candidates
- TPC: outer pad rows topological clustering + Kalman filter

Finally:

- Track candidates and segments combination
- Final Kalman filter re-fit



https://github.com/iLCSoft/ILDConfig

PandoraPFA reconstructs particles individually

- Calorimeter clustering algorithm
- Pattern recognition association algorithms
- Iterative re-clustering procedure
- Particle identification: e^{+-} , γ , n^0 , μ^{-+} , π^{+-}

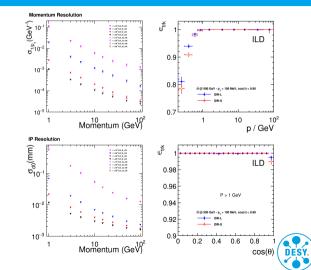
Background overlay

- Digitization
- Tracking
- Particle Flow
- High level reconstruction

Ittps://github.com/iLCSoft/ILDConfig

- Background overlay
- Digitization
- Tracking
- Particle Flow
- High level reconstruction

- Particle identification
 - Combination of TPC dEdX, shower shapes and MVA method
- $\gamma\gamma$ -finders
 - Kinematic fits for π^0 and η -mesons identification
- MC thruth linking
 - Create links between MC objects to reconstructed objects
- Primary vertex finder
- TOF estimators
 - Compute various TOF estimates based on calorimeters information

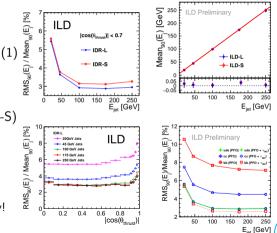


Tracking: momentum resolution and efficiency

• Goal for momentum resolution:

 $\sigma_{1/p_T} pprox 2 imes 10^{-5} {
m ~GeV^{-1}}$

- Momentum resolution
 - ILD-L slightly better in barrel \rightarrow more hits available in the TPC
 - ILD-S slightly better in forward region \rightarrow More curvature because B higher
- Tracking efficiency
 - Very close to 1!
 - ILD-L better at low momentum
 - \rightarrow Less curvature because B smaller

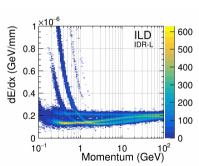


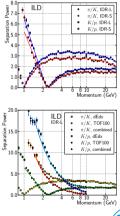
Jet energy: resolution and scale

• Jet energy resolution defined as:

$$rac{\sigma_{E_{jet}}}{E_{jet}} := rac{\operatorname{rms}_{90}(E_{jet})}{\operatorname{mean}_{90}(E_{jet})}$$

- Better than 4% for $E_{jet} \geq$ 45GeV
- Approaching 3% (3.2%) for ILD-L (ILD-S)
- Getting worse in the forward direction
- Jet energy scale better than 5%
- Effect on heavy quark flavor visible:
 - Missing energy due to neutrinos
 - Adding neutrino MC energy \rightarrow recovery!

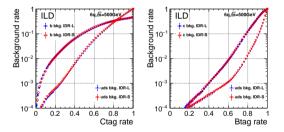



Charged particles identification: dEdX and TOF

- dEdX in the ILD-TPC \rightarrow a powerful tool for PID
- Separation power:

$$\eta_{A,B}(p) = rac{|\mu_A(p) - \mu_B(p)|}{\sqrt{rac{1}{2}(\sigma_A^2(p) + \sigma_B^2(p))}}$$

- Combination with TOF:
 → improvment at low P
- Huge potential with *timing-detector*



LCFIPlus: flavor-tag performance

- c and b jet identification crucial for physics analysis (H \rightarrow c \bar{c} , H \rightarrow b \bar{b})
- Identification using BDTs
- Trained with $e^+e^-
 ightarrow$ 6 q
- No difference between ILD-L and ILD-S
- Results varying as a function of jet energy and multiplicity
- Re-training needed for specific event topology

Conclusion and outlook

Conclusion:

- iLCSoft: a software stack for future colliders studies
 - Realistic full simulation and reconstruction
- iLCDirac: the ILC Monte-Carlo mass production software
- IDR MC production:
 - 500 GeV CMS, 1 PB produced
 - Learnt a lot about massive data production...
- Excellent ILD detector performance

<u>Outlook</u>

- Software tools evolving towards multi-threading
- Detector performance: still place for improvment

