$\widetilde{\tau}$ searches at the ILC (WIP)

Teresa Núñez - DESY

- Motivation
- Conditions and tools
- Signal characterisation
- Background
- Signal efficiency
- Analysis main background sources
- Current status and prospects

ILD Analysis/Software Meeting, 15-07-20

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Motivation

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$\widetilde{ au}$ satisfies both conditions

- High probability to be the lightest sfermion (stronger trilinear couplings)
- More difficult signal identification than the other sfermions (decay to T's)

Motivation

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$\widetilde{ au}$ satisfies both conditions

- High probability to be the lightest sfermion (stronger trilinear couplings)
- More difficult signal identification than the other sfermions (decay to T's)

Conditions and tools

 $\tilde{\tau}$ searches in worst scenario using SGV fast simulation

- Mixing angle set to 53 degrees (lowest cross sections)
- Small mass difference with LSP ($\Delta M < 11 \text{ GeV}$)

ILC experimental conditions

- Polarization P(e⁻,e⁺)=(+80%,-30%)
- $\sqrt{s} = 500 \text{ GeV}$ with 1.6 ab⁻¹ integrated luminosity (H-20, I-20 ILC500)

Event reconstruction using SGV adapted to the ILD detector concept at ILC

- Signal: Phytia 6.422
- Background: Whizard 1.95 (standard DBD background samples)

Root ntuples for analysis

Signal characterisation

Signal characterization (ctd.)

Signature:

- large missing energy and momentum
- high acolinearity, with little correlation to the energy of the decay products
- large fraction of detected activity in central detector (isotropic production of scalar particles)
- unbalanced transverse momentum
- no forward-backward asymmetry

SM processes with real or fake missing energy

Irreducible

• ZZ -> vvtt, WW -> tv tv

Almost irreducible

2-T production partially escaping detection

- ee -> ττ, ZZ -> vvII, WW -> lv lv (I = e or μ)
- ee -> ττ + ISR, ee -> ττ ee, γγ -> ττ

yy interactions

4-fermion production with two

of the fermions being neutrinos and two leptons

Cuts

Properties $\tilde{\tau}$ -events "must" have

- Missing energy (emiss). emiss > 2*MLSP GeV (preselection)
- Visible mass (mvis). mvis < $2^*(M\tilde{\tau} MLSP)$ GeV (preselection)
- Number of charged particles (ncha). 2 <= ncha < 6 (preselection)
- Momentum of all jets (pjet). pjet < 70% Beam Momentum
- Number of clusters identified as τ (nclu). nclu = 2 or 3
- T-indentification
- Total charge (totcharge). totcharge = 0, +/- 1
- Maximum jet momentum:

Above 95 % signal efficiency for each of these cuts (excluding for the τ-identification)

$$P_{max} = \frac{\sqrt{s}}{4} (1 - (\text{MLSP} - M\tilde{\tau})^2 (1 + \sqrt{1 - \frac{4M\tilde{\tau}^2}{s}})$$

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Cuts

Tau identification

- Pattern of charged tracks from T-decay:
 - Exactly two jets with charged particles
 - 1 or 3 charged particles in each charged jet, with total charge +/-1
 - Two jets with opposite charge
- Reduction of background from sources with leptons not from T-decays
 - Two charged jets not made by single leptons with same flavor
 - None of the jets made by single positron (RL beam polarization)
 - Most energetic jet should not be a single electron

Signal efficiency ~ 40% but reduce the WW background up to 94 %

QUANTUM UNIVERSE

Cuts

Properties $\tilde{\tau}$ -events "might" have but background "rarely" has

- Missing transverse momentum (ptmiss). ptmiss > 2-4 GeV (depending on mass difference)
- Large acoplanarity (thetaacop). 0.2 rad < thetaacop < 2. rad
- Large transverse momentum wrt. thrust-axis (rho). rho > 2-4 GeV(depending on mass difference)
- High angles to beam (thetaptot). 0.79 rad < thetaptot < 2.84 rad

Cuts against properties of some almost irreducible sources of background

- Charge asymmetry (cha_asym: Σ*charge* * cos(*polar_angle*)). char_asym > -1
- Difference between visible mass and Z mass (Z_peak). Z_peak > 4 GeV

Properties that the background often "does not" have

- Low energy in small angles (e30: energy in 30 degrees cone around the beam axis). e30 < 10 GeV
- Maximum energy of isolated neutral clusters (pmaxneuc). pmaxneuc < 10% beam momentum

Signal efficiencies (example behaviour)

QUANTUM UNIVERSE

Background analysis

Missing energy (GeV)

Background analysis

Fine tuning yy background rejection

M[~]τ 235GeV vs 245GeV, ΔM=10GeV

Background analysis

Fine tuning yy background rejection

Current status and prospects

Two main effects

- WW background decreases with decreasing ΔM (kinematic cut in pjetmax)
- $\gamma\gamma$ background very similar to the signal for small ΔM

Where are we (preliminary)?

- $\Delta M = 10$ to 5 GeV -> exclusion limit up to $M\tilde{\tau} = \sim 247$ GeV
- $\Delta M = 4 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 240 \text{ GeV}$
- $\Delta M = 3 \text{ GeV} \rightarrow \text{exclusion limit up to } M\tilde{\tau} = \sim 230 \text{ GeV}$
- $\Delta M = 2 \text{ GeV} \rightarrow$ fine tuning is needed due to $\gamma\gamma$ background

Current status and prospects

Comparison to previous limits

Current status and prospects

Still to be analyzed

- Fine tuning current cuts
- Requirement of ISR photon
- Vertex reconstruction for $\Delta M = 2 \text{ GeV}$?

General comments

- First analysis of the cuts have been done
- Further refinements are needed
- Use of full MC reconstructed events as background input for SGV is planned
- Results are still very preliminary

