$H \rightarrow \tau^+ \tau^-$ CP Violation Analysis for SiD

L. Braun

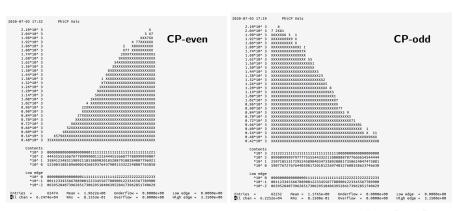
J. Barkeloo

J. Brau

C. T. Potter

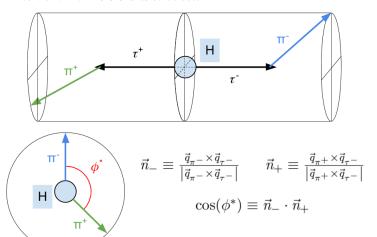
University of Oregon

August 12, 2020


Tau-Based Analysis of Higgs CP Violation - Overview

 Motivation: Is the 125GeV Higgs purely CP even, odd, or a mix? How precisely can we measure the Higgs CP mixing angle? ILD achieves ~75 mrad.

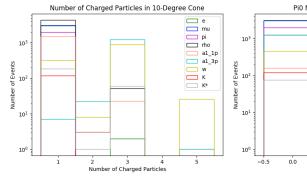
$$h_{125} = h_{even}^0 sin(\phi_{mix}) + A_{odd}^0 cos(\phi_{mix})$$

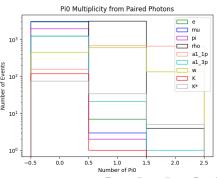

- Higgs is fully **CP-odd** if $\phi_{mix}=0$, fully **CP-even** if $\phi_{mix}=\frac{\pi}{2}$
- Find ϕ_{mix} with a fit $C_0 + C_1 cos(\phi^* 2\phi_{mix})$ to a CP-sensitive distribution ϕ^*

Example of how distribution is supposed to work:

Tau-Based Analysis of Higgs CP Violation - Methodology

- ullet General methodology: extract **polarimeter vector** from analyzing tau decay; find azimuthal angle between au^+ and au^- polarimeter vectors
- Polarimeter vectors vary with tau decay; $\tau^{\pm} \to \pi^{\pm} \nu_{\tau}$ (below) and $\tau^{\pm} \to \pi^{\pm} \pi^{0} \nu_{\tau}$ are the simplest to analyze, but using **higher-multiplicity decays** would allow for **more events** to be used

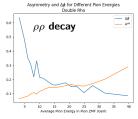


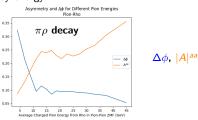

Key Areas of Active Work

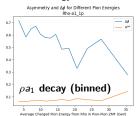
- Higher-multiplicity τ tagging: new NN-based tagging for all relevant τ decays (as opposed to low-multiplicity tagging used before)
- ullet Continuous CP sensitivity analysis: energy-based binning and asymmetry-based weighting for $\Delta\phi$ improvement
- Preliminary CP violation analysis with a₁ decays: implementing and testing methods of a₁ polarization state separation

Input Distributions for Higher-Multiplicity Decay Tagging

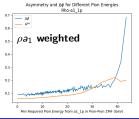
- ullet Many previous au-tagging methods used **energy and multiplicity cuts** to tag mostly **low-multiplicity** decays
- New double-neural-network au-tagging method to tag higher-multiplicity decays allows for more complete CP violation analysis with $H o au^+ au^-$
- Require $e^+e^-/\mu^+\mu^-$ Z-daughter pair, then use **two highest-energy**, **opposite-charge** charged particles as seeds and divide rest of particles based on angular proximity to seeds
- Compute several distributions to separate background from $H \to \tau^+ \tau^-$ and to distinguish τ decay paths (below and next slide)


Input Distributions for Higher-Multiplicity Decay Tagging

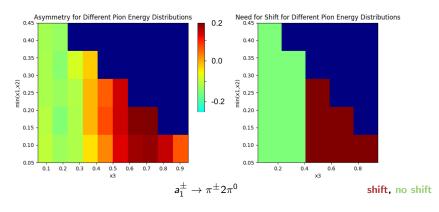

- \bullet Group all charged particles closest to each seed inside and outside of 10° cone around seed
- Pair all photons to reconstruct **neutral pions** (requiring $0.12 < m_{\gamma\gamma} < 0.15$); assign to closest seed
- Tau-vs-background NN: 23 inputs
 - Z invariant mass, recoil mass, total event energy, invariant mass of remaining particles after Z daughters removed (total 4 inputs)
 - Angle between charged seeds
 - Energy and multiplicity of **charged particles** inside and outside of 10° cone for each au (total 8 inputs)
 - ullet Energy and multiplicity of π^0 and unpaired **photons** for each au (total 8 inputs)
 - Total visible invariant mass of charged particles within 10° cone and all assigned π^0 and photons for each τ (total 2 inputs)
- Tau decay separation NN: 10 inputs
 - \bullet Energy and multiplicity of charged particles inside and outside of 10° cone (4 inputs)
 - \bullet Energy and multiplicity of π^0 and unpaired photons (total 4 inputs)
 - Total visible invariant mass of charged particles within 10° cone and all assigned π^0 and photons (1 input)
 - Seed is lepton (0) or hadron (1)?
- Preliminary testing using 1 hidden layer for each NN


Energy-Based Event Weighting for $\Delta\phi$ Calculation

- ullet For events containing ho, ℓ , and/or a_1 , CP sensitivity varies with energy
- Plotting distributions of $\Delta\phi$ and asymmetry $|A^{aa}|=4C_1/(2\pi C_0)$ from events binned by energy lets us weight events by energy



• From plotting minimum-energy-vs- $\Delta\phi$ instead of binning by energy, weighting each ϕ_{mix} value by $|A^{aa}|^2$ greatly improves $\Delta\phi$ values and seems to make strict energy cuts unnecessary



Separation of a₁ Polarization States

- Distributions of ϕ^* for a_1^T and a_1^L are **out of phase**; must be **separated**
- Effective rough cut: shift ϕ^* values by π for events with $x_3 > 0.4$ with $x_3 = E_{opp}/E_{a_1}$, where E_{opp} is energy of pion with different charge from other two

Next Steps

- Debug and finish developing high-multiplicity NN tagger
- Improve a₁ polarization analysis methods
- Run full tagging and CP violation analysis with full SiD reconstruction (have been using MC truth and fast MC simulations)