Status on e⁺e⁻ -> γZ process Jet Energy Calibration

Takahiro Mizuno

Introduction

- In the photon energy calibration, photon energy can be reconstructed using measured direction of γ and μ -, μ + or additionally muon mass information in the e⁺e⁻ $\rightarrow \gamma Z$ process.
- Using similar energy reconstruction methods, jet energies in the e⁺e⁻ $\rightarrow \gamma Z$, $Z \rightarrow 2J$ ets can be reconstructed.
- If the jet energies can be correctly reconstructed, the $e^+e^- \rightarrow \gamma Z$ process is useful for the jet energy calibration.

Today's talk

- 1. Shift to the 250 GeV analysis
- 2. Method comparison result
- 3. Method 3 study

Today's talk

1. Shift to the 250 GeV analysis

- 2. Method comparison result
- 3. Method 3 study

Shift to the 250 GeV analysis

- In order to perform 250 GeV analysis, we decided to use DBD samples instead of 500 GeV samples until new sample is validated.
- To make things clear, overlay removal by MCTruth link is implemented.

Full simulation

(ILCSOFT version v01-16-02)

Event Selection

Signature of the events: 1 energetic photon + 2 jets

In order to choose the signal photon,

- 1. choose neutral particles with particle ID = 22 (Pandora PFA ID)
- 2. energy > 50 GeV
- 3. choose the particle closest to 108.4 GeV

If another photon is inside the cone (with the angle $\cos\theta > 0.998$ from the signal photon), it is merged with the signal photon.

Jet Clustering

- All PFOs other than the selected photon are clustered into 2 jets with Durham algorithm (done by LCFIPlus)
- The higher energy jet (in PFO) is defined as "jet 1" and lower one as "jet 2"
- For comparison with MCtruth, all final state particles from 2 quarks are clustered into 2 jets

Jet Energy Reconstruction Method

Basic ideas: apply momentum conservation Inputs: measured jet directions and mass and photon directions

Method 1: Use 3-momentum conservation and ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma})$

Method 2': Use transverse momentum conservation and ignore ISR /Use measured P_{γ} as input Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, \mathbf{P}_{\gamma})$ -> Determine (P_{J1}, P_{J2})

Method 2: Use 4-momentum conservation and consider ISR /Use measured P_{γ} as input Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, \mathbf{P}_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{ISR})$

Method 3: Use 4-momentum conservation and consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Mz distribution

Photon energy & Mz distribution

Mz GeV

MC jet energies distribution

Today's talk

1. Shift to the 250 GeV analysis

2. Method comparison result

3. Method 3 study

Method comparison of jet1 E difference ¹² for correct photon selection events

Photon energy bias in DBD

photonEAnl-photonEMC

Photon energy bias in DBD

MC Ey GeV

Photon phi bias in DBD

Method comparison of jet1 E difference for correct photon selection events

Using "Smeared MCtruth Εγ", "MCtrue θγ, φγ" as input in Method 2 and 2'. 16

"EγMC+0.17*sqrt(EγMC)*gR andom->Gaus() +0.01*EγMC*gRandom->Gaus();

Still Method 3 is the best.

Method comparison of jet1 E difference ¹⁷ for correct photon selection events

Today's talk

- 1. Shift to the 250 GeV analysis
- 2. Method comparison result
- 3. Method 3 study

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

The first equation (1) becomes a quartic equation of $|P_{ISR}|$.

- -> 8 Possible Solutions!
- (2 direction options of ISR × 4 solutions for each quartic equation)

Problem: unexpected bump in reconstructed jet energy

Method 3 Jet1 energy distribution

M3j1E {abs(photonthetaAnl-photonthetaMC)<0.01}

Sum of the M3 Reconstructed Energy

Reconstructed $\sqrt{P_{J1}^2 + m_{J1}^2} + \sqrt{P_{J2}^2 + m_{J2}^2} + |P_{\gamma}| + |P_{ISR}|$

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

The first equation (1) becomes a quartic equation of $|P_{ISR}|$.

-> 8 Possible Solutions!

(2 direction options of ISR \times 4 solutions for each quartic equation) The first equation (1) is an irrational equation!

-> We should be careful when removing radicals $\sqrt{P_{J_1}^2 + m_{J_1}^2}$ and $\sqrt{P_{J_2}^2 + m_{J_2}^2}$. (Extraneous roots!!)

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Modified criteria to choose the best answer

Choose the solution with

(i) Real and positive value with $\langle E_{CM}/2$ (ii) $\sqrt{P_{J1}^2 + m_{J1}^2} > 0$ and $\sqrt{P_{J2}^2 + m_{J2}^2} > 0$ (iii) P_{J1} , P_{J2} , $P_{\gamma} > 0$ (iv) solved P_{γ} closest to the measured P_{γ}

Problem: unexpected bump in reconstructed jet energy Method 3 Jet1 energy distribution Conventional M3 Modified M3

The bump disappeared.

M3 jet1 energy difference

(M3Nj1E-j1EMC)/j1EMC {M3sol>0. && abs(photonthetaAnl-photonthetaMC)<0.01}

Summary

- In order to perform 250 GeV analysis, we decided to use DBD samples instead of current using samples until new sample is validated.
- Photon energy has peaks at ~0 GeV and 109 GeV, and the latter one is from radiative return.
- The distributions of reconstructed jet energies using Method 2 and 2' have positive shift mainly because of the photon energy and angle biases in PFO.
- Method3 is the best among the 4 methods to reconstruct the jet energy.
- Method3 had problem due to extraneous roots. The problem is fixed and the peak of jet1 energy difference becomes slightly sharper.
- For the next step, energy and angle dependences of Method3 reconstructed jet energy will be checked.

Backup

Based on 4-momentum conservation

• Several reconstruction methods (Method 1, 2', 2, and 3) are considered.

 ϕ : azimuthal angle

Method 2': Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine (P_{J1}, P_{J2})

 $\left\{ \begin{array}{ll} \left(\begin{array}{cc} sin\theta_{J1}cos\phi_{J1} & sin\theta_{J2}cos\phi_{J2} \\ sin\theta_{J1}sin\phi_{J1} & sin\theta_{J2}sin\phi_{J2} \end{array} \right) \begin{pmatrix} P_{J1} \\ P_{J2} \end{pmatrix} = \begin{pmatrix} 500sin\alpha - sin\theta_{\gamma}cos\phi_{\gamma}P_{\gamma} \\ -sin\theta_{\gamma}sin\phi_{\gamma}P_{\gamma} \end{pmatrix} \right.$

Method 2: Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{ISR})$

2 solutions for each sign of P_{ISR} -> choose the best answer which satisfies **1** better

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

The first equation (1) becomes a quartic equation of $|P_{ISR}|$.

- -> 8 Possible Solutions!
- (2 direction options of ISR × 4 solutions for each quartic equation)

Choose the solution with (i) real and positive value (ii) solved P_{γ} closest to the measured P_{γ}

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

$\sqrt{1}$	$P_{J1}^2 + n$	n_{j}^{2}	$\overline{F_{11}} + \sqrt{P}$	$\overline{J_2}$	$_{2} + m_{J2}^{2}$	+	$ P_{\gamma} + $	F	$P_{ISR} = \mathbf{E}_{\mathbf{CM}}$

*	Row	*	ESum	*	EISR	*	E _{J1}	*	$E_{J2} * E_{\gamma E} *$

*	2	*	366.53696	*	72.535351	*	156.96777	*	58.569181 * 79.066051 *
*	9	*	298.62565	*	9.8457809	*	146.57377	*	25.051876 * 118.63231 *
*	10	*	400.57065	*	1.3064283	*	203.00334	*	75.567307 * 121.25753 *
*	11	*	426.27959	*	50.853665	*	152.64726	*	88.632330 * 135.13139 *
*	12	*	333.03742	*	66.762206	*	141.00941	*	42.028016 * 84.256399 *
*	16	*	282.4159	*	26.559148	*	16.589673	*	128.82622 * 111.20429 *
*	19	*	279.9828	*	54.639210	*	116.56381	*	15.418981 * 94.215952 *
*	27	*	281.90901	*	69.992376	*	136.99227	*	16.916738 * 59.932090 *
*	33	*	382.44162	*	35.440445	*	147.82023	*	<u>66.621390</u> * 133.36070 *
*	36	*	386.59473	*	54.612970	*	152.68251	*	68.912223 * 111.61674 *
*	50	*	279.53136	*	15.377309	*	127.38918	*	15.142176 * 122.37568 *
*	61	*	297.67282	*	13.505328	*	129.46546	*	24.207362 * 131.23656 *
*	62	*	282.14231	*	47.540821	*	134.59052	*	16.551790 * 84.420444 *
*	66	*	313.20207	*	3.2458796	*	154.15914	*	32.042931 * 124.63790 *
*	68	*	290.91970	*	17.090852	*	141.20568	*	20.714028 * 112.41749 *
*	70	*	1535.683	*	55.852535	*	714.16113	*	643.52186 * 123.50819 *
*	72	*	296.60387	*	10.071965	*	144.07756	*	23.526305 * 119.37677 *
*	142	*	360.68284	*	25.702743	*	145.96058	*	55.722258 * 134.05892 *
*	172	*	339.58430	*	12.741662	*	150.33482	*	45.249473 * 132.17298 *
*	177	*	2495.1260	*	20.447979	*	1122.7955	*	1244.3305 * 108.01703 *

$$\begin{split} \sqrt{|P_{31}|^{2} + M_{31}^{2}} + \sqrt{|P_{32}|^{2} + M_{32}^{2}} + |P_{0}| + |P_{1SR}| = 500 \quad -- \otimes \\ |P_{31}|^{2} + M_{31}^{2} = \left[500 - \sqrt{|P_{32}|^{2} + M_{22}^{2} - |P_{0}| - |P_{1SR}|} \right]^{2} \\ &= \left| P_{32} \right|^{2} + M_{2}^{2} - 2\sqrt{|P_{32}|^{2} + M_{22}^{2}} \left(500 - |P_{0}| - |P_{1SR}| \right) + \left(500 - |P_{0}| - |P_{1SR}| \right)^{2} \\ &+ \left((P_{32})^{2} + M_{2}^{2} \right) \left(500 - |P_{0}| - |P_{1SR}| \right)^{2} = \left(-|P_{31}|^{2} - M_{31}^{2} + |P_{32}|^{2} + M_{32}^{2} + \left(500 - |P_{0}| - |P_{1SR}| \right)^{2} \right]^{2} \end{split}$$

Should be required to be positive when solving the equation. Now trying to implement this.