Shower modelling with TB data and Commissioning data from the SiW ECAL prototype

Fabricio Jiménez, on behalf of the SiW ECAL groups

Calice Collaboration Meeting September 29th, 2020

Outline

- 1. Modelling showers Test Beam data from the 2017 SiW-ECAL prototype
- Data set from the 2017 Test Beam
- Selection of events and cell hits for modelling electromagnetic showers
- Shower modelling
- 2. A look on "cosmics" data for the new prototype
- The prototype
- Pedestals and MIP data

Modelling showers - Test Beam data from the 2017 SiW-ECAL prototype

Data used*

- Scans of various energies: 1, 2, 3, 4, 5, 5.8 GeV.
- Different W configurations with varying amounts of W in front of each slab:
 - W-configuration 1: 0.6, 1.2, 1.8, 2.4, 3.6, 4.8 and 6.6 *X*₀
 - W-configuration 2: 1.2, 1.8, 2.4, 3.6, 4.8, 6.6 and 8.4 X₀
 - W-configuration 3: 1.8, 2.4, 3.6, 4.8, 6.6, 8.4 and 10.2 X₀
- Energy calibrated to mips

\rightarrow The goal is to use the data collected from positron beams to model EM shower profiles

Global selection of events

Use two criteria:

1. Slabs hit by the shower and 2. Energy of hits in cells 107 Configuration 2 @ 2 GeV 10^{6} 10⁵ # events # hits 10⁵ 10^{4} 10^{3} 10² 10^{1} 104 10^{0} 1 2 3 6 7 0 2 4 6

nhit slab

Require:

Example:

- At least 5 slabs hit
- μ +6 σ on ped • gaussian fit
- "Central" slabs hit

hit energy flatten

Shower model

Model the longitudinal and transversal energy profiles of showers

Transversal (per-layer) model

Double gaussian (6 parameters) shared mean, no correlation ($\rho 1 = \rho 2 = 0$) $\sigma 1 < \sigma 2$

Longitudinal

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

$$A(f\mathcal{N}(\boldsymbol{\mu}, \mathbb{1}\sigma_1) + (1-f)\mathcal{N}(\boldsymbol{\mu}, \mathbb{1}\sigma_2))$$

- Fit the longitudinal and transversal parts separately
- Fit the longitudinal part using integral of double gaussian as prompt for E per layer

Transversal fits

Fit on each layer the double gaussian model

Deficit in longitudinal profile

Require "central" slabs hit by shower

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

Overview on shower modelling on 2017 TB data

- First attempt at fitting shower shapes on SiW-ECAL data (7 layers)
 - Might help handle masked cells
 - Still some issues with calibration mip \rightarrow shower ?
 - To be x-checked
 - Software being developed
- To Do's
 - Robustness against noise cuts
 - Robustness of method to be assessed on simulation data
 - Adapt to individual showers
 - Check beam profile
 - Use integrated (over cell surface) functions
 - Try various lateral shower profiles
 - Complete with full 3D profiles

A look on commissioning data for the new prototype

Beginning of June ...

Running with 15 layers with 15360 channels (of which 13824 equipped with wafers !!!!)

First cosmic (Adrian Irles)

- Already now a major breakthrough for the project
 - (Towards) the culmination of 10 years of work on Technological prototype
- Real size digital readout gives realistic impression of density at extremities of Ecal layers
- Revision and scrutinisation of setup

This talk

Roman Pöschl

CALICE Meeting Sept. 2020

Slide from Roman's talk yesterday

Taking data with the prototype

A commissioning procedure has been put in place by Adrián (see Roman's talk yesterday)

Preliminary data taken to put in place a system for pedestal and MIP studies

I will show below some aspects of the data taken:

- Acquisition time: 48h
- Configuration for cosmics
- 14 boards connected

Example pedestal

We have that for each SCA (15), channel (64), chip (16) and board (15) \rightarrow 230k

ped_chip0_chn0_sca4

Summarize pedestal (board 4, SCA 5)

 \rightarrow Same can be done for mean, RMS of pedestal histogram (backup)

All pedestals (number of events)

All pedestals (# events)

Example for board 4, SCA 5

Usually chips 6-7-8 and 14-15-16 present a dip

Pedestal RMS and max location

Ped extreme "outliers" in 1+2+3+4+5 \rightarrow 230 peds (0.12%)

Pedestal RMS and max location

To be done

- Data shown mostly noise at the moment
 - Building events / check timing
 - Fit Pedestals and MIPs
- Longer data taking
- Do similar checks on testbench data taken at LLR
- Cosmics trace reconstruction

Pedestal instability

Pedestal is different for each conf/energy (left) and across SCAs (right)

After selection

Hits passed per layer. Conf 2, 2GeV Cuts: μ + 6.0 σ , nhit_slab \geq 5

Evolution of mean x (top) and mean y (bottom)

Evolution of sigma 1 (top) and sigma 2 (bottom)

Longitudinal fits

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

- Black dots come from integrating the model on each layer (prev. slide)
- Red dots are the sum of hit energies
- Solid lines are respective fits

 \rightarrow The integral of the model slightly underestimates the integral of hit energies

 \rightarrow Function fit better than 4th layer deficit?

Deficit in longitudinal profile

Deficit may be due to overload

- Before:
 - o nhit_slab >= 5
 - hit_ \overline{E} > μ +6 σ of pedestal gauss fit
- Improve by selecting "central" slabs (next slide)

Deficit in longitudinal profile

Deficit may be due to overload

- Before:
 - o nhit_slab >= 5
 - hit_ \overline{E} > μ +6 σ of pedestal gauss fit
- Improve by selecting "central" slabs

Require layers 2-3-4 in all cases. Except conf 3, 5 GeV: 1-2-3-4

Summarize pedestal (board 4, SCA 5)

Pedestal RMS and max location, per 'region'

Pedestal RMS and max location

Ped extreme "outliers" \rightarrow 230 peds (0.12%)

In a stricter sense, ped gone wrong has:

- RMS > 10
- Max location ∉ (200, 300)
- Noisy \rightarrow #counts > 1000?

In which case, many went wrong? \rightarrow check if e.g. already masked

In 1+2+3+4+5: 83119 peds (~44%)

Pedestal RMS and max location (SCA 0)

Pedestal RMS and max location in SCA 0 - trend

Pedestal RMS and max location (SCA 0)

Board setup

https://docs.google.com/spreadsheets/d/1ecl0UY6vKw6d_gQ8TMOZYOZw8osKKzpL_1ia69nTXqQ/edit#gid=0

coreKapton slot	Layer position	Slab ID	ASU type	wafer	front end (slboard ID)	Glissiere neded for the W	W in front (mm)	X0	X0 (acc)	Comments/Issues
0	1	26	COB	500	12	whatever (no W will be added)	0	0	0	
1	2	27	COB	500	8	2.1mm		0	0	
2	3	16	FEV11	320	9	2.1mm	2.1	0.6	0.6	wafer delaminated -> @LPNHE since 9/9/20
3	4	13	FEV11	320	10	2.1mm	2.1	0.6	1.2	
4	5	14	FEV11	320	5	2.1mm	2.1	0.6	1.8	
5	6	15	FEV10	320	1	2.1mm	2.1	0.6	2.4	
6	7	19	FEV11	320	13	2.1mm	2.1	0.6	3	
7	8	20	FEV11	320	11	2.1mm	2.1	0.6	3.6	
8	9	24	FEV12	500	7	2.1mm	2.1	0.6	4.2	Stable AVDD ??
9	10	21	FEV11	320	14	2.1mm	2.1	0.6	4.8	
10	11	25	FEV12	500	3	2.1mm	2.1	0.6	5.4	problems communicating the ID of the SLboard ?? (SOLVED)
11	12	22	FEV11	320	4	4.2mm	2.1	0.6	6	
12	13	23	FEV10	320	6	4.2mm	4.2	1.2	7.2	
13	14	18	FEV11	320	2	4.2mm	4.2	1.2	8.4	problems communicating the ID of the SLboard ?? (SOLVED) Stable consumption ??> SOLVED shorcut in DVDD (capacitance in skiroc 14
14	15	17	FEV11	320	0	whatever (no W will be added)	4.2	1.2	9.6	Wafer delaminated -> @LPNHE since 4/8/20