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Outline
AHCAL Particle ID using BDTs

• Particle identification 
• Motivation and method overview

• Data preparation

• Boosted Decision Tree method description

• Parameters and input

• Resulting metrics

• Application to test beam data

• Summary and outlook (1st part)

• Bonus: Detailed single hadron shower structure 

• Motivation

• Method and data preparation

• Challenges

• Summary and outlook
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CALICE AHCAL

38 active layers of 24x24 scintillator tiles (3x3 cm2) 
alternating with 1.7 cm steel absorber + 1 “Tokyo” layer 
with 6x6 cm2 tiles 

In total: ~22000 channels, ~4 λ

Test beam prototype. 

beam
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Motivation for particle ID
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We always deal with admixture of other 
particles.  

⇒To investigate detector response to 
particles of given type we need to perform 
particle identification

μ−π−

e−

TBMay18 10GeV pion runTBMay18 10GeV pion run
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Particle ID workflow
Classification procedure

Pre-analysis

• Calculation of common 

observables

• Clustering and track finding*


Event filtering

• By number of hits: 


nHits > nHits_min

• multi-particle and upstream 

Event

BDT multiclass model  
trained on simulations (10-200GeV). 

3 classifiers:


Hadron classifier

• Trained on showering pions


Electron classifier

• Trained on electrons 

Muon (muon-like) classifier

• Trained on muons 

* Described during CALICE Collaboration Meeting at CERN: 
https://agenda.linearcollider.org/event/8213/contributions/44343/attachments/34812/53758/VBocharnikov_CALICE_meeting_CERN.pdf

https://agenda.linearcollider.org/event/8213/contributions/44343/attachments/34812/53758/VBocharnikov_CALICE_meeting_CERN.pdf
https://agenda.linearcollider.org/event/8213/contributions/44343/attachments/34812/53758/VBocharnikov_CALICE_meeting_CERN.pdf
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Event filtering

Clustering: Hits are grouped in clusters if if they are 
neighbours in volume. First 5 layers are taken into 
account 

If NClusters > 1 => multi-particle event (or 
upstream shower)

Simplified algorithms. 
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Event filtering

MIP tracking: Construct towers with same x and y coordinates. 
First 5 layers are taken into account.  

If NMIPTracks > 1 => multi-particle event 

Clustering: Hits are grouped in clusters if if they are 
neighbours in volume. First 5 layers are taken into 
account 

If NClusters > 1 => multi-particle event (or 
upstream shower)

Simplified algorithms. 
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BDT classification
Model and input. TBJune18. 

Software and model: 

• LightGBM package

• Multi-class Gradient Boosted 

Decision Tree

• Multi log loss function
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BDT classification
Model and input. TBJune18. 

Software and model: 

• LightGBM package

• Multi-class Gradient Boosted 

Decision Tree

• Multi log loss function

Gradient Boosting: 
Method combines many sequential decision 
trees with weights. Weights are optimised 
during training by calculating the gradience of 
loss function
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BDT classification
Model and input. TBJune18. 

Software and model: 

• LightGBM package

• Multi-class Gradient Boosted 

Decision Tree

• Multi log loss function

Gradient Boosting: 
Method combines many sequential decision 
trees with weights. Weights are optimised 
during training by calculating the gradience of 
loss function

Multi log loss: 

Where N - number of events in the test sample, 3 - number of 
classes, Yij is binary variable with the expected labels and pij is  
he classification probability output by the classifier for the 𝑖-

instance and the 𝑗-label.

L = −
1
N

N

∑
i

3

∑
j

Yijln(pij)
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BDT classification

Observables: 

• Number of hits

• Shower start

• Event radius

• Center of gravity in z

• Energy fraction in first 22 layers

• Energy fraction in shower center

• Energy fraction in shower core

• Fraction of track hits

• Number of track hits

• Number of layers with hits from last 5

• Mean hit energy after shower start

Model and input. TBJune18. 

Software and model: 

• LightGBM package

• Multi-class Gradient Boosted 

Decision Tree

• Multi log loss function

Training and test set: 

• MC particles 10-200GeV QGSP_BERT_HP 

physics list simulated and reconstructed 
using June 2018 setup: 
• pions (st ≤ 40) 
• electrons 
• muons 
• Simulated data is split 50/50 - test/train
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Resulting metrics 
After training

ROC curves for the test data

*TPR =
TP

TP + FN
, FPR =

FP
FP + TN

Model AUC for different energies

A
U

C
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BDT classification
Output. Comparison with data. 

TBJune18  
After event 
filtering

TBJune18  
After event 
filtering

TBJune18  
After event 
filtering

Classifier

Classifier

Classifier

Classifier

Classifier

Classifier

Hadrons Electrons Muons

MC

data

MC

data

MC

data

13

• Similar response 
on data and 
simulations

Classifiers:
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Results on test beam data taken in June 2018
Energy sum distribution for 40GeV muon run

Esum, MIP Esum, MIP 

• Very low admixture of other particles 

• Little fraction of delta electrons can be classified as hadron event

Energy sum Energy sum
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Results on test beam data taken in June 2018

• Energy expectation for electron 
events in pion run is close to real 
electron run 

• Energy distribution of hadron 
events in 80GeV electron run 
looks very similar to actual 80GeV 
pion

Energy sum distributions for 80GeV runs
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Results on test beam data taken in June 2018

• Energy expectation for electron 
events in pion run is close to real 
electron run 

• Long high energy tail of muon-like 
events 

• Low energy tail for electrons  

• Most of hadron events in electron 
run are at low energy

Energy sum distributions for 10GeV runs
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Summary and outlook (1st part)

 BDT particle ID method in the AHCAL was discussed  

 Method shows good performance 

 Similar response on data and MC 

 Sort input observables by importance to drop less useful ones 

 Final documentation

AHCAL Particle ID using BDTs



Bonus part
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Detailed single hadron shower structure

• Standard pattern recognition techniques for highly 
granular calorimeters provide connection between 
hits and particle entering a calorimeter

Motivation

40GeV 𝝅-

40 GeV MC Pion event
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40 GeV MC Pion event

40GeV 𝝅-

20

Detailed single hadron shower structure

• Standard pattern recognition techniques for highly 
granular calorimeters provide connection between 
hits and particle entering a calorimeter

Motivation
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40 GeV MC Pion event

21

Detailed single hadron shower structure

• Standard pattern recognition techniques for highly 
granular calorimeters provide connection between 
hits and particle entering a calorimeter 

• High granularity combined with the latest advances 
in Computer Vision (CV) algorithms can allow us to 
detect single particles within a shower and fully 
exploit imaging capability of highly granular 
calorimeters

Motivation

Color coding represent groups of 
hits corresponding to different 

instances of MC particles 
Nhits per object is > 6
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Detailed single hadron shower structure

• Standard pattern recognition techniques for highly 
granular calorimeters provide connection between 
hits and particle entering a calorimeter 

• High granularity combined with the latest advances 
in Computer Vision (CV) algorithms can allow us to 
detect single particles within a shower and fully 
exploit imaging capability of highly granular 
calorimeters 

• Can help to: 
• Benchmark simulations and other object 

detection studies (track finding) 
• Study shower shapes from different 

perspective 

• Improve software compensation 
• Separate showers

Motivation
40 GeV MC Pion event

Color coding represent groups of 
hits corresponding to different 

instances of MC particles 
Nhits per object is > 6
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• In CV this problem is classified instance 
segmentation

Method and data preparation
Detailed single hadron shower structure
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• In CV this problem is classified instance 
segmentation 

• Data set with links between simulated hits and MC 
objects has been prepared 

• MC object is MC particle + daughters w/o 
parent’s endpoint (hard ionization, 
Bremsstrahlung, elastic interactions, etc.)

Method and data preparation
Detailed single hadron shower structure

MC object
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• In CV this problem is classified instance segmentation 

• Data set with links between simulated hits and MC 
objects has been prepared 

• MC object is MC particle + daughters w/o parent’s 
endpoint (hard ionization, Bremsstrahlung, elastic 
interactions, etc.) 

• Roadmap: 

• Point Cloud input data - (X,Y,Z,E,(T)) 

Recent implementation in HEP: 

Jet tagging: https://arxiv.org/abs/1902.08570 

Calorimetry: https://arxiv.org/abs/1902.07987 

• Machine learning model is being developed, existing 
implementations of similar problem can be adapted 
to the task (work in progress)

Method and data preparation
Detailed single hadron shower structure

Point cloud segmentationMC object

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1902.07987
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Challenges of proposed method 40 GeV MC Pion event

• Large disk space usage  

• O(1000) MC instances per 40 GeV pion 
event including single hit objects 

• Interpretability of segmentation output & training 
data 

• Many complicated objects to plot distributions 

• Hierarchical structure  

• One hit can be connected to several MC objects 

• Main difference from the standard CV 
problems

Detailed single hadron shower structure

Color coding represent groups of 
hits corresponding to different 

instances of MC particles 
Nhits per object is > 0
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Summary and outlook

 BDT particle ID method in the AHCAL was discussed  

 Method shows good performance 

 Similar response on data and MC 

 Sort input observables by importance to drop less useful ones 

 Final documentation 

 Single shower substructure analysis is ongoing 

 Training data preparation is done 

 Machine learning model is being developed  

 Model performance and limitations study will help to review true segmentation on MC level 

 Physical interpretation of results

AHCAL Particle ID using BDTs and Single Shower Substructure



Thank you



Backup slides
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Central energy fraction Shower radius

Cut-based method: 

• > 10 steering parameters  for 

each energy  
• Asymmetric distributions/

long tails can be problematic


• Cut artefacts
Multivariate methods: 

• Can provide probabilistic 

classifier trained on given 
distributions of observables


• One model can be used for 
whole dataset
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mu 1000000 evts 
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Classifier

TBJune18  
40GeV Pion run 
100000 events

TBJune18  
10GeV Electron run 
2175 Had events 

Disadvantages of cut-based method
Towards BDT ID

Will be discussed during one of 
the upcoming HGCAL meetings
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Track finding

Track candidates: 
2/3 neighbours in surrounding volume. 2 of them on 
different sides

Candidates ordered: 
• z-coordinate 
• Distance to (0,0,z) in same layer

31

Important tool for shower characterisation, 
Can be used for particle ID
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Track finding

Hit#1 
A  

Seed 
(first from  

candidates)

Hit#2 
B 

Nearest neighbour 
of hit#1

Distance check

Nearest neighbour 
of hit#1

Distance check
Angle check with AB

Hit#3 
C 

Nearest neighbour 
of hit#1

Distance check
Angle check with AC

(…)

Angle check with AB

Grouping candidates into tracks

** Procedure repeated iteratively **

A B
?

A B

C?
?

After grouping, track angle is obtained using MSE linear regression
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33

Scintillator path length correction for track hits
W o r k  i n  p r o g r e s s …

W o r k  i n  p r o g r e s s …

W o r k  i n  p r o g r e s s …
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Resulting ID variables
After performing tracking

Shower core hits

Detached hits 
* < 3 neighbours 
in surrounding 
volume

Track hits 
* found by tracking 
algorithm 
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Sources of confusion
From 10GeV pion run

Esum, MIP 

• Compact pion showers with 
late shower start can be 
classified as muons 

• Additional variables can 
improve identification 

• Fraction << 1%

Muon-like event : 
Mu-like score is 0.51 
Had score is 0.48

Energy sum

10 GeV Pion 
(zoomed in)
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Esum, MIP 

• Multi-particle/upstream shower 
events with small fragments 
can be classified as hadron 
events 

• Multi-particle events can be 
partly filtered out using 
timing information

Sources of confusion
From 10GeV electron run

Hadron event : 
Had score is ~0.9

10 GeV  Electron 
(zoomed in)

Energy sum
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Esum, MIP 

• Some events are 
contaminated with 
cosmic muons 

• Multi-particle events 
can be partly filtered 
out using timing 
information

Sources of confusion
From 10GeV electron run

Hadron event : 
Had score is ~0.98

Energy sum

10 GeV  Electron 
(zoomed in)
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BDT output
Comparison with separate model trained only on 10GeV particles. 
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10GeV MC electron test sample 
50000 events

10GeV MC pion test sample 
50000 events
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N
hi

ts

Esum

N
hi

ts

Esum

TBJune2018 
60 GeV electron run 
Electron events 

TBJune2018 
MC electron 
training set 
No selection 

Of trained BDT model

Low energy tail

Probably, overplayed 
events (with 2 triggers)

Application on electron data

Electron events: classifierele>0.5


