Particle ID in the AHCAL + Single Shower Substructure (bonus)

CALICE Collaboration Meeting

Vladimir Bocharnikov, DESY Sep 30, 2020

P.N.Lebedev Physical Institute of the Russian Academy of Science

Outline

AHCAL Particle ID using BDTs

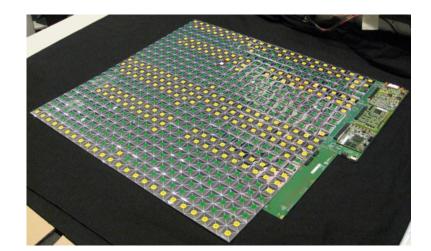
Particle identification

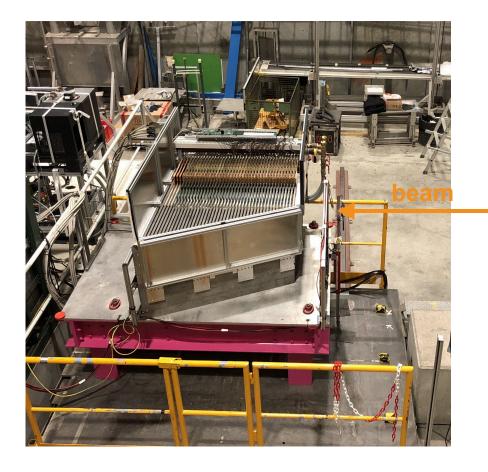
- Motivation and method overview
- Data preparation
- Boosted Decision Tree method description
- Parameters and input
- Resulting metrics
- Application to test beam data
- Summary and outlook (1st part)
- Bonus: Detailed single hadron shower structure
- Motivation
- Method and data preparation
- Challenges
- Summary and outlook

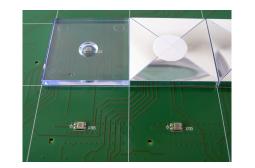
Test beam prototype.

38 active layers of 24x24 scintillator tiles ($3x3 \text{ cm}^2$) alternating with 1.7 cm steel absorber + 1 "Tokyo" layer with $6x6 \text{ cm}^2$ tiles

In total: ~22000 channels, ~4 λ

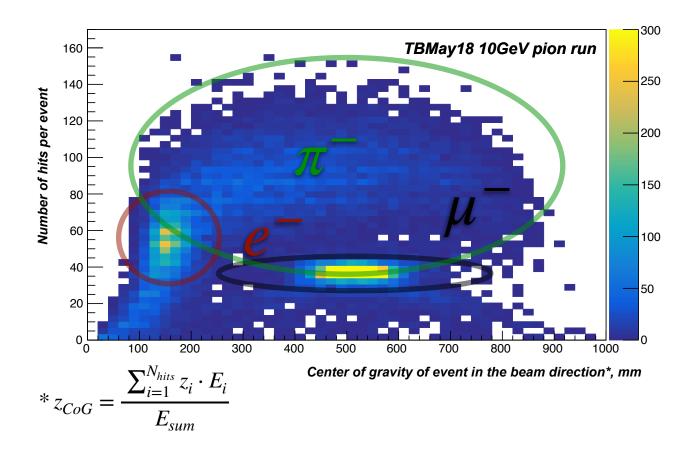






Motivation for particle ID

In test beam data



We always deal with admixture of other particles.

 \Rightarrow To investigate detector response to

particles of given type we need to perform particle identification

Particle ID workflow

Classification procedure

Pre-analysis

- Calculation of common observables
- Clustering and track finding*

Event filtering

- By number of hits:
 nHits > nHits_min
- multi-particle and upstream

BDT multiclass model

trained on simulations (10-200GeV).

3 classifiers:

Hadron classifier

Trained on showering pions

Electron classifier

Trained on electrons

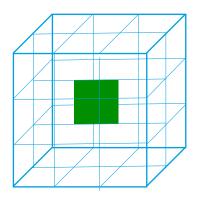
Muon (muon-like) classifier

Trained on muons

* Described during CALICE Collaboration Meeting at CERN: https://agenda.linearcollider.org/event/8213/contributions/44343/attachments/34812/53758/VBocharnikov_CALICE_meeting_CERN.pdf

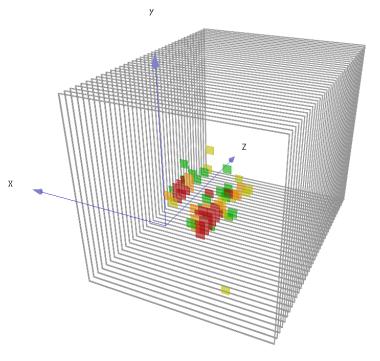
Event filtering

Simplified algorithms.



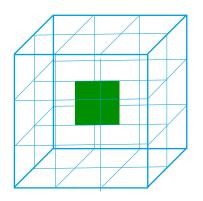
Clustering: Hits are grouped in clusters if if they are neighbours in volume. First 5 layers are taken into account

If *N_{Clusters}* > 1 => multi-particle event (or upstream shower)



Event filtering

Simplified algorithms.

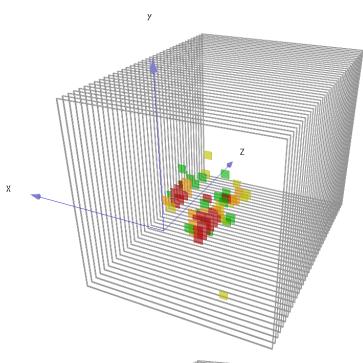


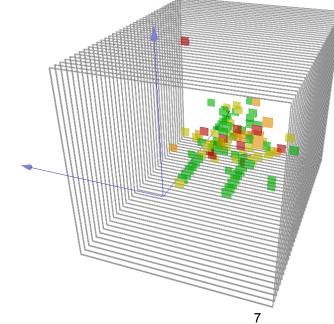
Clustering: Hits are grouped in clusters if if they are neighbours in volume. First 5 layers are taken into account

If *N_{Clusters}* > 1 => multi-particle event (or upstream shower)

MIP tracking: Construct towers with same x and y coordinates. First 5 layers are taken into account.

If *N_{MIPTracks}* > 1 => multi-particle event





Model and input. TBJune18.

Software and model:

- LightGBM package
- Multi-class Gradient Boosted

Decision Tree

Multi log loss function

Model and input. TBJune18.

Software and model:

- LightGBM package
- Multi-class Gradient Boosted

Decision Tree

Multi log loss function

Gradient Boosting:

Method combines many sequential decision trees with weights. Weights are optimised during training by calculating the gradience of loss function

Model and input. TBJune18.

Software and model:

- LightGBM package
- Multi-class Gradient Boosted

Decision Tree

Multi log loss function

Multi log loss:

$$L = -\frac{1}{N} \sum_{i}^{N} \sum_{j}^{3} Y_{ij} ln(p_{ij})$$

Where *N* - number of events in the test sample, 3 - number of classes, Y_{ij} is binary variable with the expected labels and p_{ij} is he classification probability output by the classifier for the *i*-instance and the *j*-label.

Gradient Boosting:

Method combines many sequential decision trees with weights. Weights are optimised during training by calculating the gradience of loss function

DESY. | Particle ID + Single Shower Substructure | CALICE Collaboration Meeting | Vladimir Bocharnikov

Model and input. TBJune18.

Software and model:

- LightGBM package
- Multi-class Gradient Boosted
 - **Decision Tree**
- Multi log loss function

Training and test set:

- MC particles 10-200GeV QGSP_BERT_HP physics list simulated and reconstructed using June 2018 setup:
 - pions (st \leq 40)
- electrons
- muons
- Simulated data is split 50/50 test/train

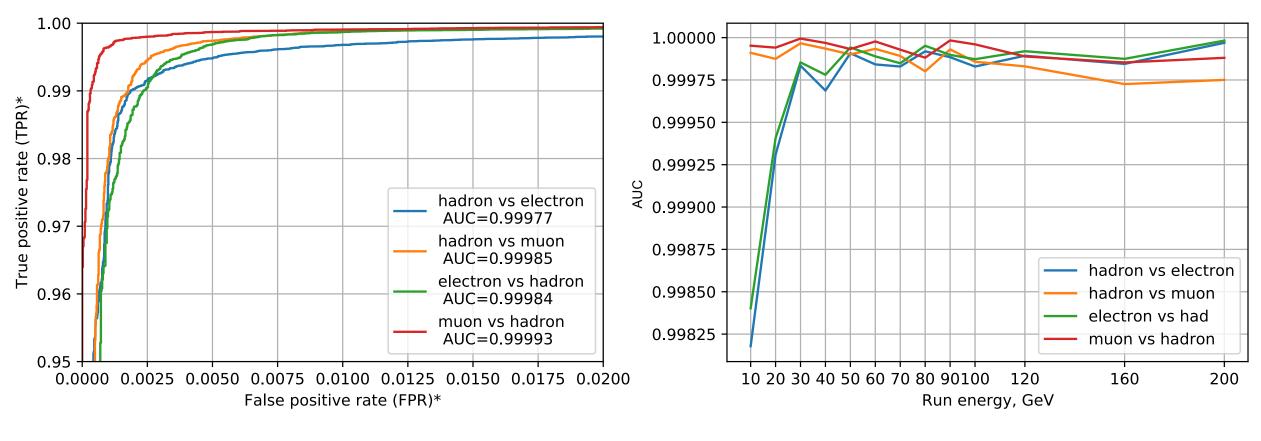
Observables:

- Number of hits
- Shower start
- Event radius
- Center of gravity in z
- Energy fraction in first 22 layers
- Energy fraction in shower center
- Energy fraction in shower core
- Fraction of track hits
- Number of track hits
- Number of layers with hits from last 5
- Mean hit energy after shower start

Resulting metrics

After training

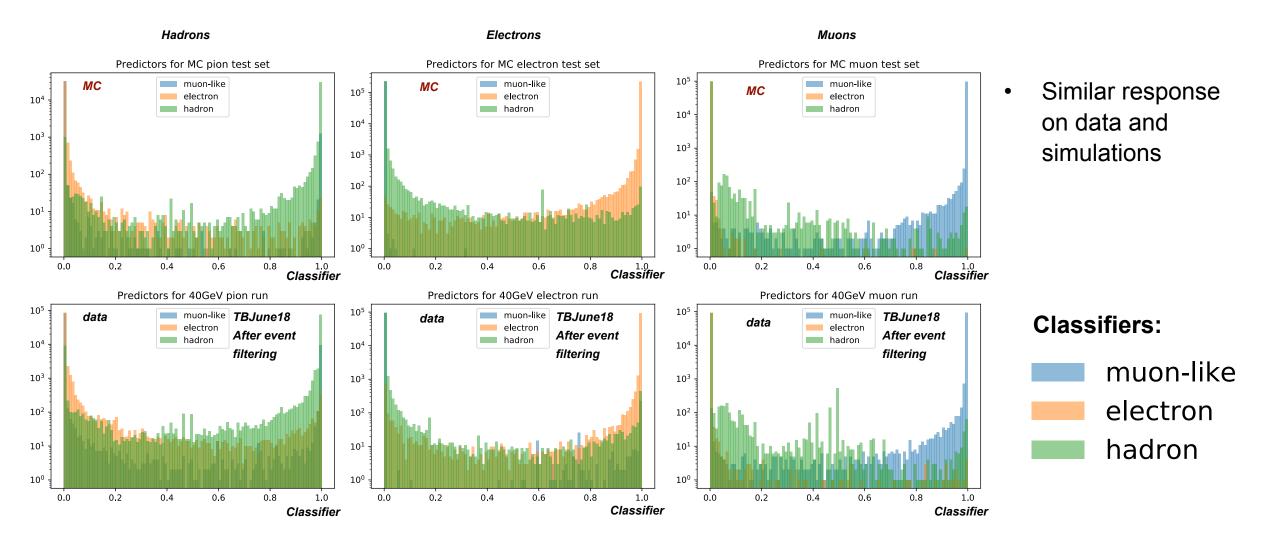
ROC curves for the test data



 $*TPR = \frac{TP}{TP + FN}, FPR = \frac{FP}{FP + TN}$

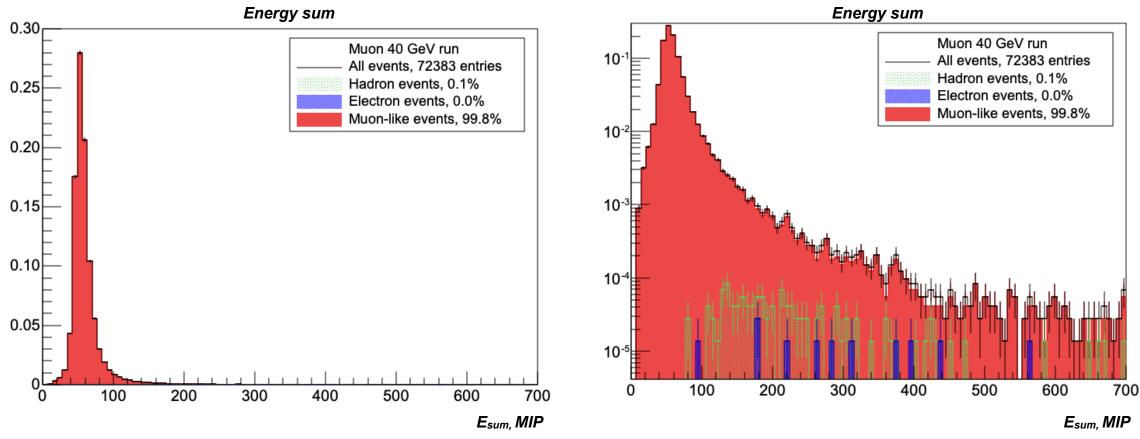
DESY. | Particle ID + Single Shower Substructure | CALICE Collaboration Meeting | Vladimir Bocharnikov

Output. Comparison with data.



Results on test beam data taken in June 2018

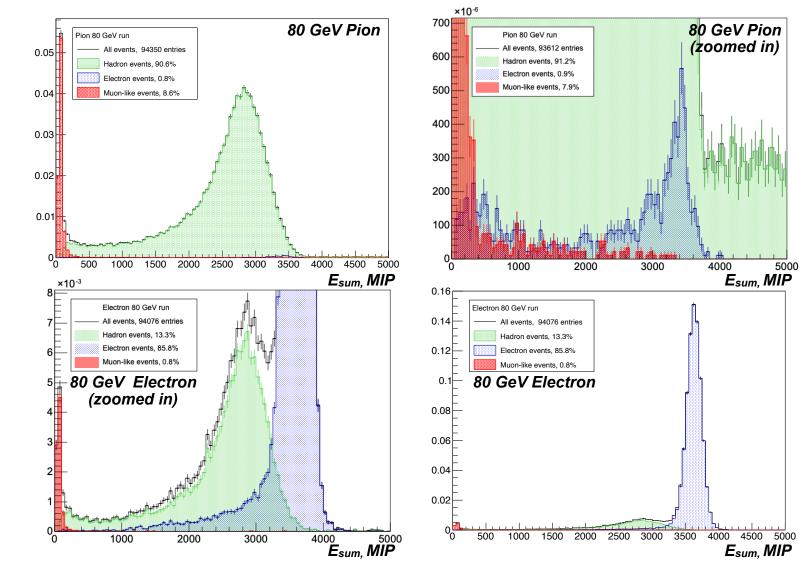
Energy sum distribution for 40GeV muon run



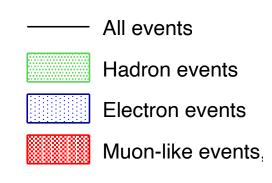
- Very low admixture of other particles
- Little fraction of delta electrons can be classified as hadron event

Results on test beam data taken in June 2018

Energy sum distributions for 80GeV runs

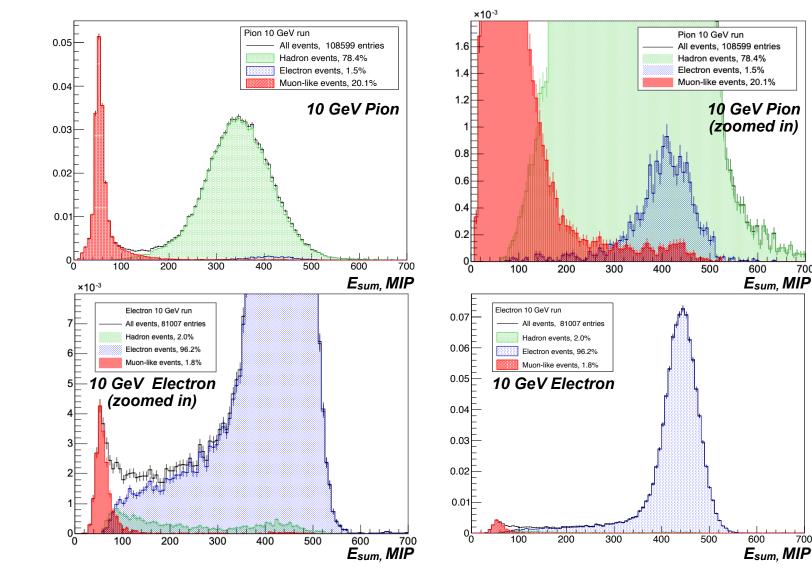


- Energy expectation for electron events in pion run is close to real electron run
- Energy distribution of hadron events in 80GeV electron run looks very similar to actual 80GeV pion



Results on test beam data taken in June 2018

Energy sum distributions for 10GeV runs

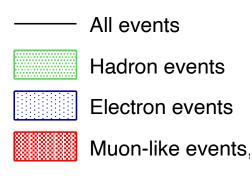


- Energy expectation for electron events in pion run is close to real electron run
- Long high energy tail of muon-like events
- Low energy tail for electrons •

700

700

Most of hadron events in electron run are at low energy



Summary and outlook (1st part)

AHCAL Particle ID using BDTs

Model BDT particle ID method in the AHCAL was discussed

Method shows good performance

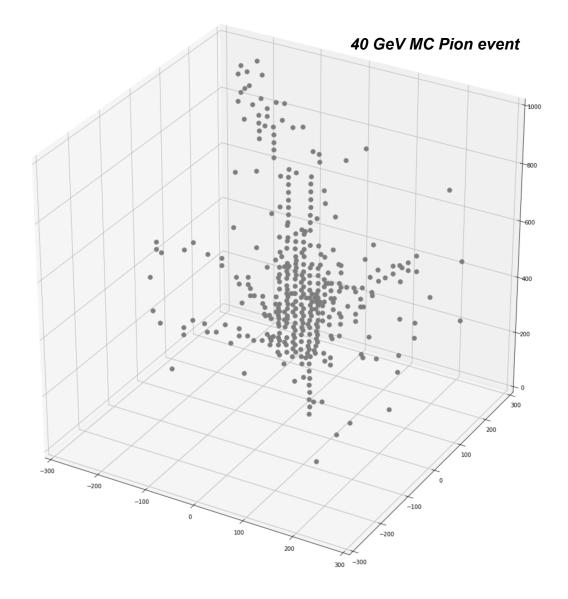
☑ Similar response on data and MC

□ Sort input observables by importance to drop less useful ones

Final documentation

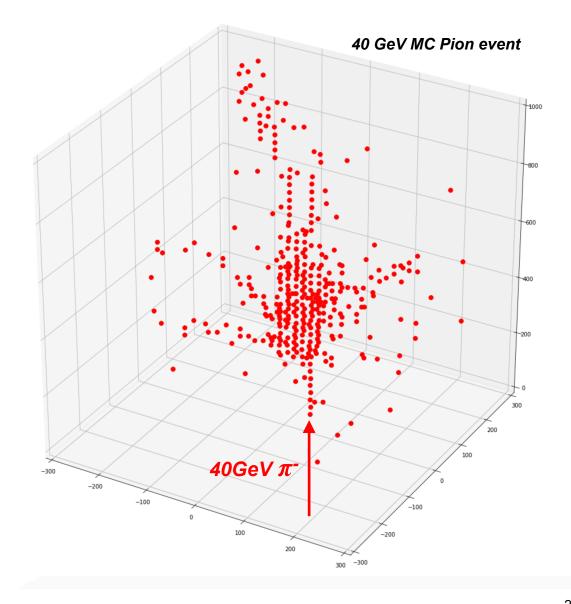
Motivation

• Standard pattern recognition techniques for highly granular calorimeters provide connection between hits and particle entering a calorimeter



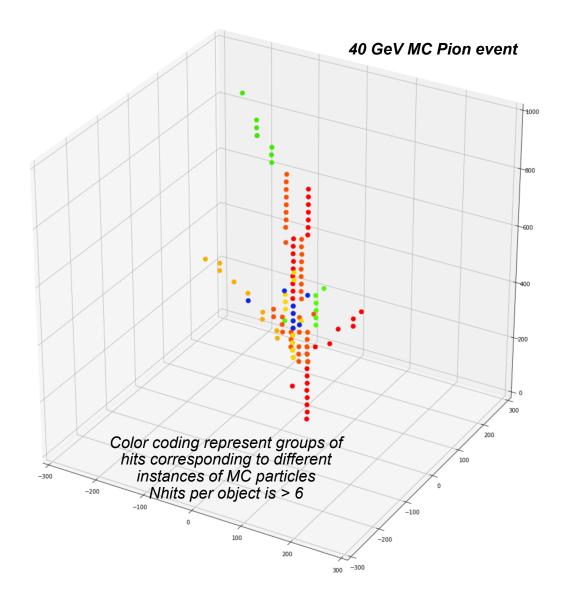
Motivation

• Standard pattern recognition techniques for highly granular calorimeters provide connection between hits and particle entering a calorimeter



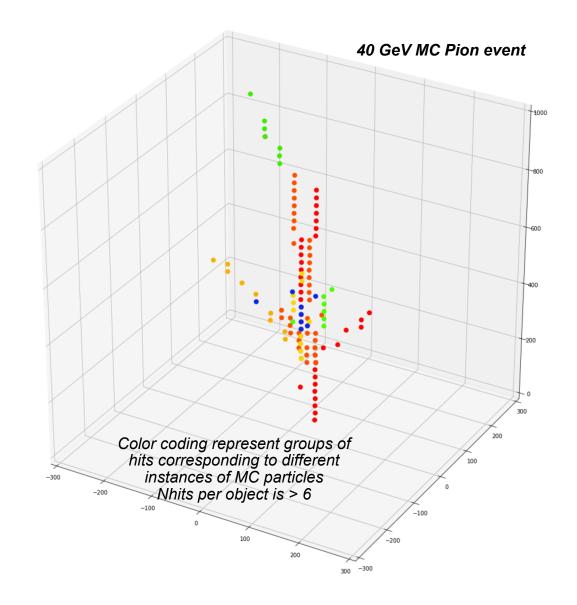
Motivation

- Standard pattern recognition techniques for highly granular calorimeters provide connection between hits and particle entering a calorimeter
- High granularity combined with the latest advances in Computer Vision (CV) algorithms can allow us to detect single particles within a shower and fully exploit imaging capability of highly granular calorimeters



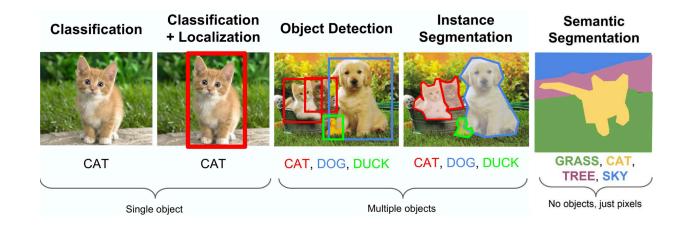
Motivation

- Standard pattern recognition techniques for highly granular calorimeters provide connection between hits and particle entering a calorimeter
- High granularity combined with the latest advances in Computer Vision (CV) algorithms can allow us to detect single particles within a shower and fully exploit imaging capability of highly granular calorimeters
 - Can help to:
 - Benchmark simulations and other object detection studies (track finding)
 - Study shower shapes from different perspective
 - Improve software compensation
 - Separate showers



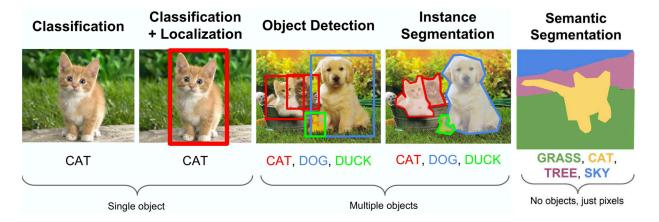
Method and data preparation

• In CV this problem is classified **instance segmentation**

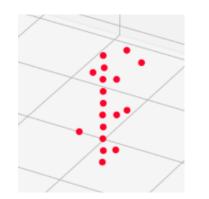


Method and data preparation

- In CV this problem is classified instance segmentation
- Data set with links between simulated hits and MC objects has been prepared
 - **MC object** is MC particle + daughters w/o parent's endpoint (hard ionization, Bremsstrahlung, elastic interactions, etc.)



MC object



Method and data preparation

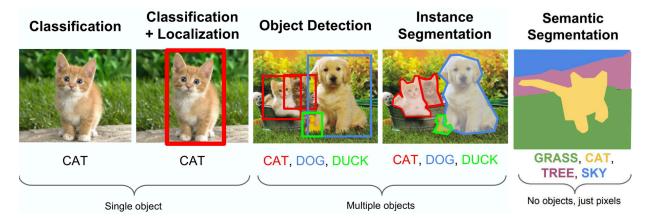
- In CV this problem is classified **instance segmentation**
- Data set with links between simulated hits and MC objects has been prepared
 - **MC object** is MC particle + daughters w/o parent's endpoint (hard ionization, Bremsstrahlung, elastic interactions, etc.)
- Roadmap:
 - Point Cloud input data (X,Y,Z,E,(T))

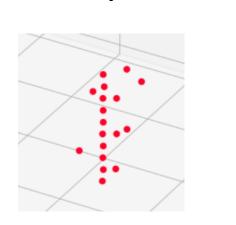
Recent implementation in HEP:

Jet tagging: <u>https://arxiv.org/abs/1902.08570</u>

Calorimetry: <u>https://arxiv.org/abs/1902.07987</u>

• Machine learning model is being developed, existing implementations of similar problem can be adapted to the task (work in progress)



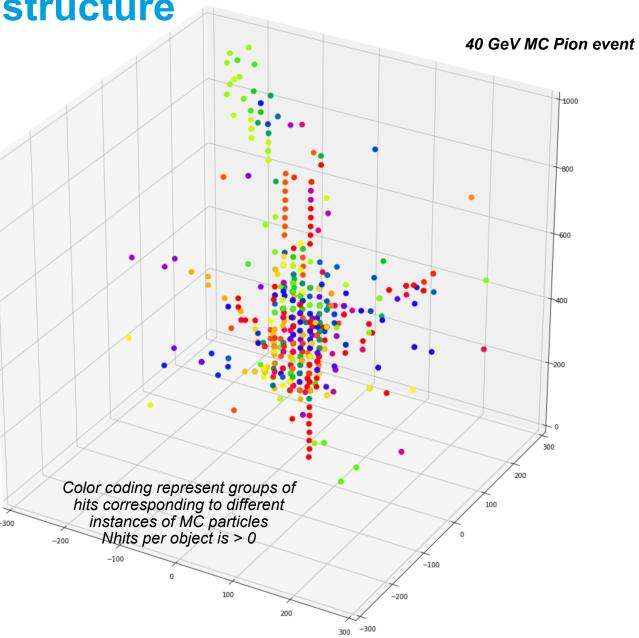


MC object

Point cloud segmentation

Challenges of proposed method

- Large disk space usage
 - O(1000) MC instances per 40 GeV pion event including single hit objects
- Interpretability of segmentation output & training data
 - Many complicated objects to plot distributions
 - Hierarchical structure
- One hit can be connected to several MC objects
 - Main difference from the standard CV problems



Summary and outlook

AHCAL Particle ID using BDTs and Single Shower Substructure

Mathebra Sector BDT particle ID method in the AHCAL was discussed

- Method shows good performance
- Similar response on data and MC
- □ Sort input observables by importance to drop less useful ones
- Final documentation
- Single shower substructure analysis is ongoing
 - Training data preparation is done
 - □ Machine learning model is being developed
 - □ Model performance and limitations study will help to review true segmentation on MC level
 - □ Physical interpretation of results

Thank you

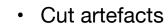
Backup slides

Disadvantages of cut-based method

Towards BDT ID

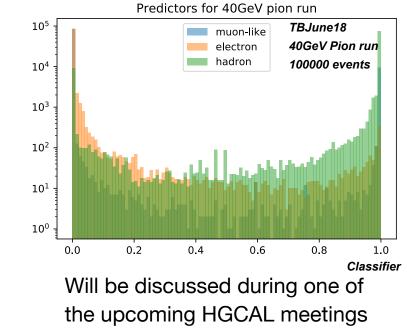
Cut-based method:

- > 10 steering parameters for each energy
- Asymmetric distributions/ long tails can be problematic

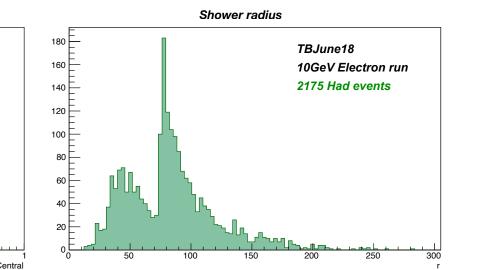


Multivariate methods:

- Can provide probabilistic classifier trained on given distributions of observables
- One model can be used for whole dataset

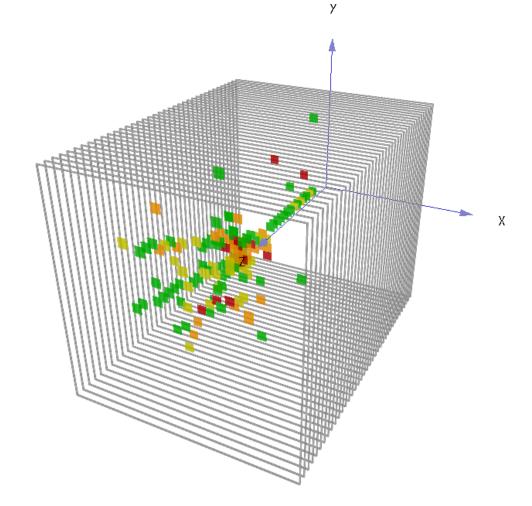


Central energy fraction 10⁵ TBJune18 MC 40GeV ele 1000000 evts 1000000 evts 10⁴ mu 1000000 evts No selection 10³ 10² 10 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 fracCentral



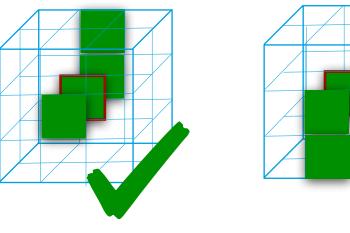
Track finding

Important tool for shower characterisation, Can be used for particle ID



Track candidates:

2/3 neighbours in surrounding volume. 2 of them on different sides

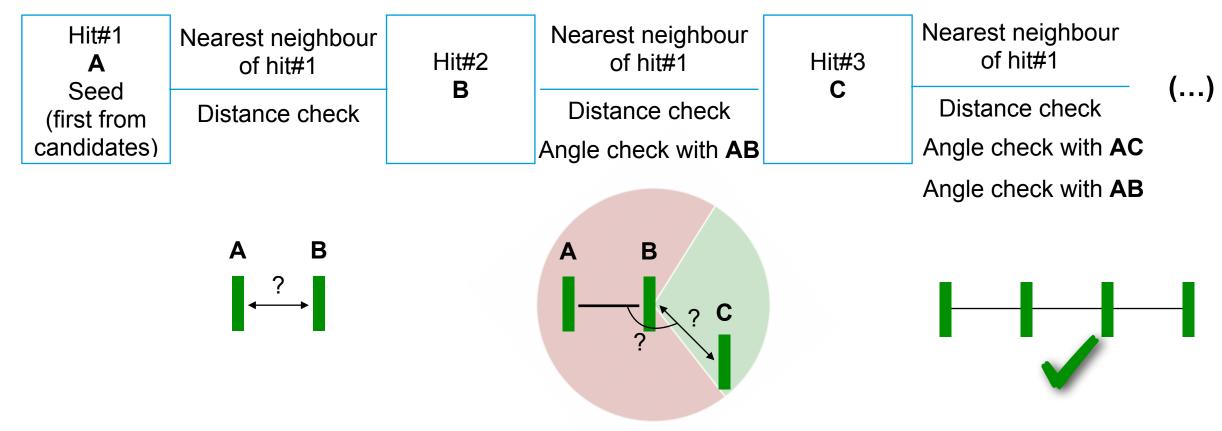


Candidates ordered:

- z-coordinate
- Distance to (0,0,z) in same layer

Track finding

Grouping candidates into tracks

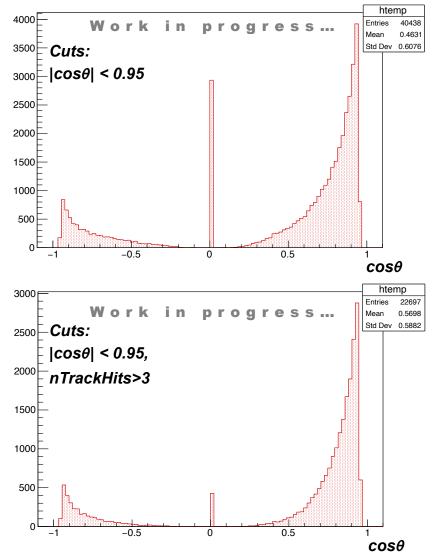


After grouping, track angle is obtained using MSE linear regression

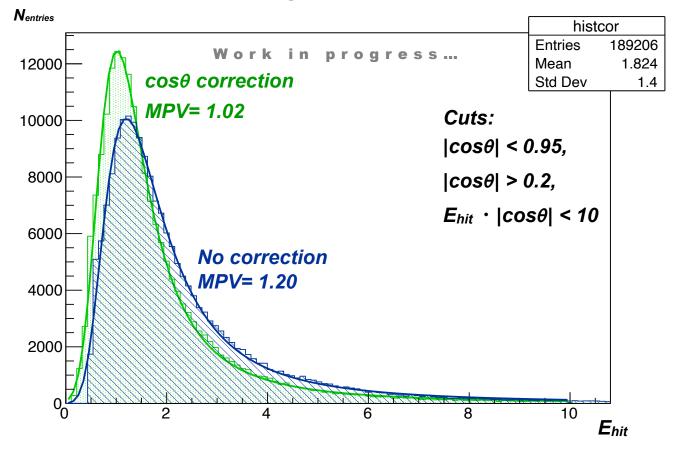
** Procedure repeated iteratively **

Tracking quality check

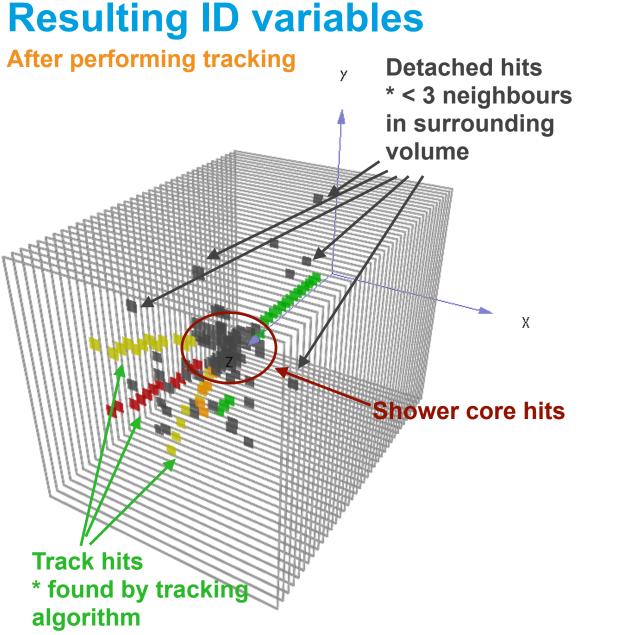
TBMay18 10GeV pion run. 50039 events.



Scintillator path length correction for track hits

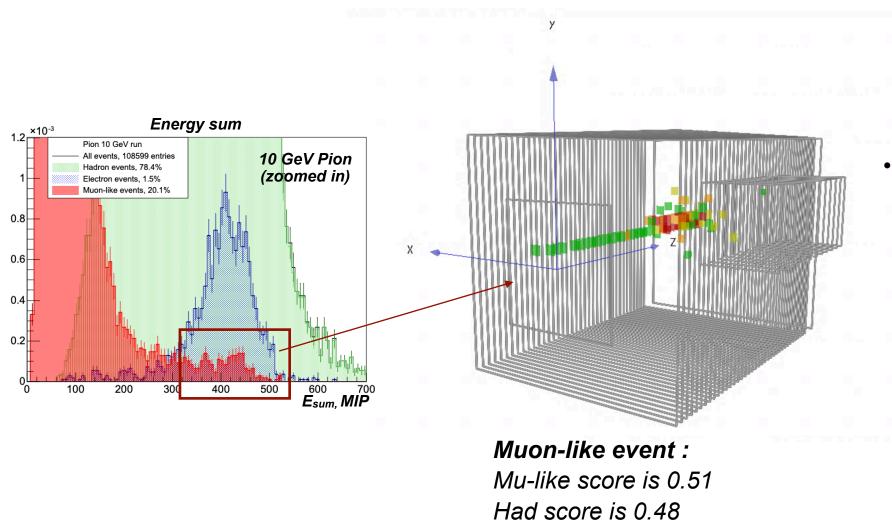


DESY. | CALICE Collaboration Meeting, 2 Oct 2019 | Vladimir Bocharnikov



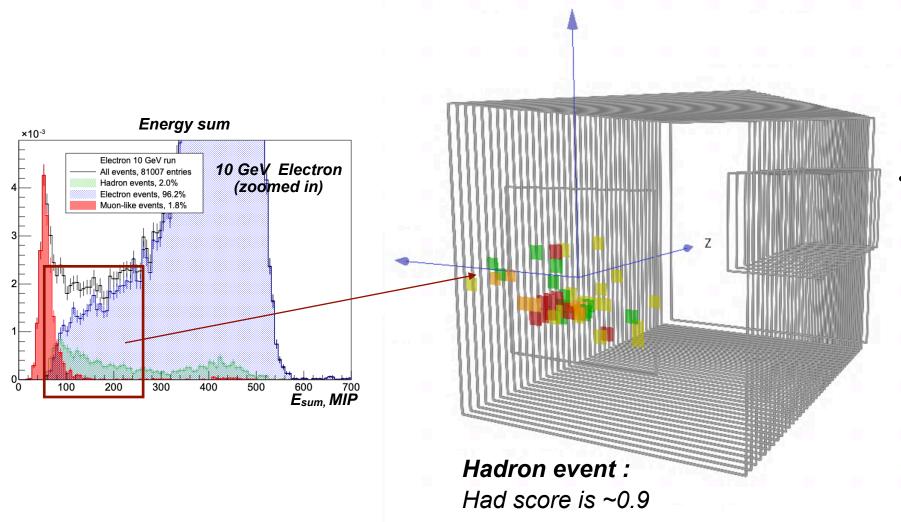
Sources of confusion

From 10GeV pion run



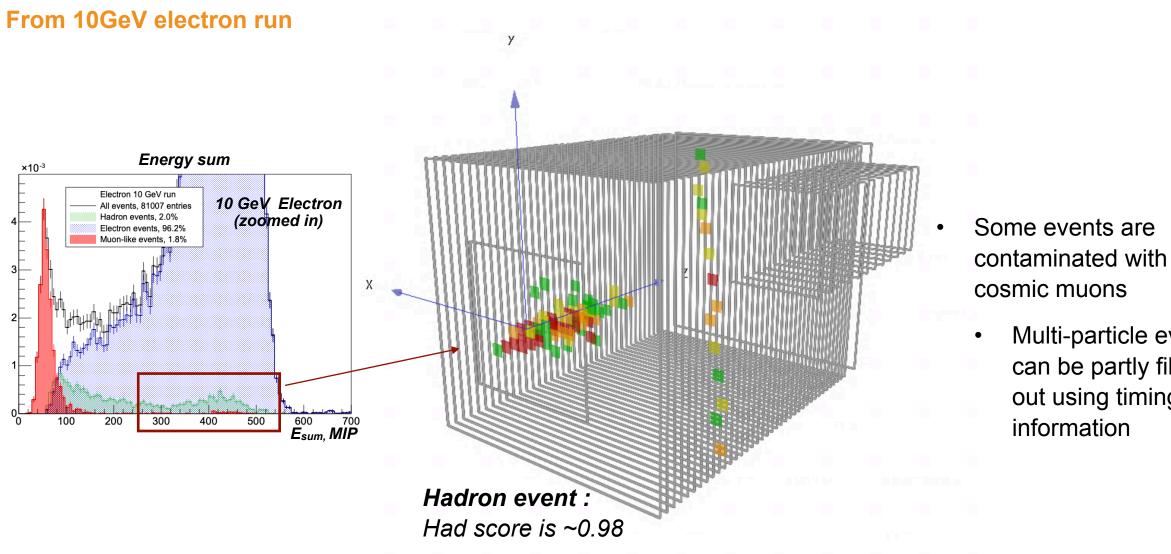
- Compact pion showers with late shower start can be classified as muons
 - Additional variables can
 improve identification
 - Fraction << 1%

Sources of confusion



- Multi-particle/upstream shower events with small fragments can be classified as hadron events
 - Multi-particle events can be partly filtered out using timing information

Sources of confusion



DESY. | Particle ID + Single Shower Substructure | CALICE Collaboration Meeting | Vladimir Bocharnikov

Multi-particle events

can be partly filtered

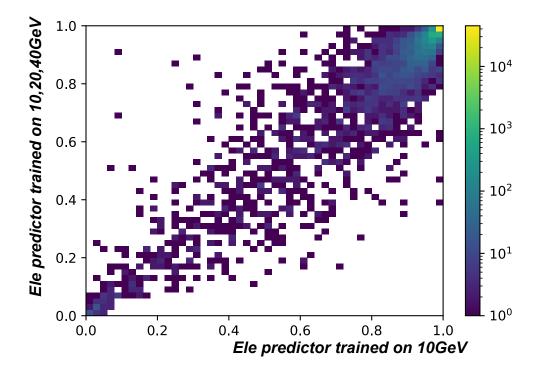
out using timing

information

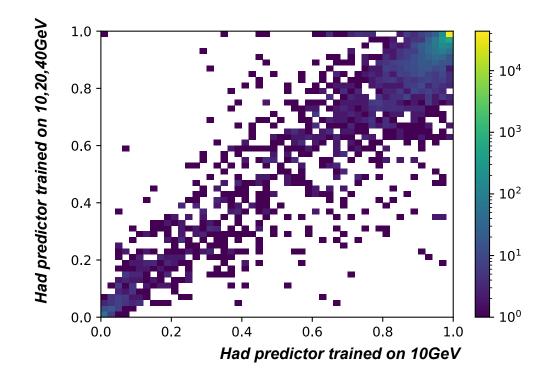
BDT output

Comparison with separate model trained only on 10GeV particles.

10GeV MC electron test sample 50000 events

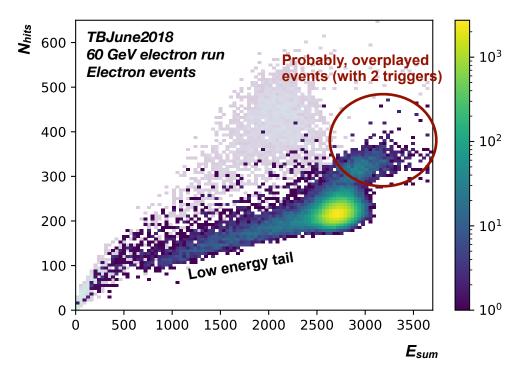


10GeV MC pion test sample 50000 events



Application on electron data

Of trained BDT model



Electron events: classifier_{ele}>0.5

