CLASSICAL STUDY OF SHOWER SHAPES IN AHCAL

Olín Pínto CALICE Vírtual Meetíng 30th Sept. 2020

Contents

- \rightarrow Introduction
- \rightarrow Motivation
- → Parametrization for Longitudinal & Radial profile
- \rightarrow Procedure
- \rightarrow Results
- → Summary & Outlook

Hadronic Showers

- The hadronic cascades have two distinct components: hadronic (charged pions, heavy fragments, excited nuclei) and electromagnetic (γγ)
- → For EM component the relevant scale is X_0 , while for the truly hadronic component the scale is λ_1
- \rightarrow ~ 1/3 of the pions produced are neutral pions
- → Hadronic showers have a complex structure and are theoretically not as well understood as electromagnetic showers

Motivation

- → One important way to understand the shower is to measure shower profiles from the start point of the shower
- → The longitudinal and radial profiles of showers can be investigated with excellent accuracy, due to fine segmentation of the calorimeter
- → To obtain the contribution of average electromagnetic fraction in a hadronic shower

Virtual cells

To analyse the radial shower profile, finer width is chosen

- \rightarrow The dimension of the physical AHCAL cell is 30×30 mm²
- → All physical AHCAL cells are subdivided into virtual cells of 10×10 mm²
- → In this method the energy deposited in the physical cells is equally distributed over the virtual cells covering its area
 Radial sketch

Longitudinal parametrization

→ The longitudinal profiles are parametrised as a sum of "**short**" and "**long**" components

$$\Delta E(z) = A \cdot \left\{ \frac{f}{\Gamma(\alpha_{short})} \cdot \left(\frac{Z[X_0]}{\beta_{short}}\right)^{\alpha_{short}-1} \cdot \frac{e^{\frac{-Z[X_0]}{\beta_{short}}}}{\beta_{short}} + \frac{1-f}{\Gamma(\alpha_{long})} \cdot \left(\frac{Z[\lambda_I]}{\beta_{long}}\right)^{\alpha_{long}-1} \cdot \frac{e^{\frac{-Z[\lambda_I]}{\beta_{long}}}}{\beta_{long}} \right\}$$

https://arxiv.org/pdf/1602.08578.pdf

 $\begin{array}{l} A: scaling factor \\ \textbf{f:electromagnetic fraction} \\ \Gamma: gamma function \\ Z[X_0] and Z[\lambda_l]: distance from the shower start \\ \alpha_{short}, \alpha_{long}, \beta_{short} and \beta_{long}: free parameters \end{array}$

R. K. Bock, T. Hansl-Kozanecka, T. P. Shah, Parametrization of the longitudinal development ofhadronic showers in sampling calorimeters,Nucl. Instrum. Meth.186(1981) 533.

Short" component, is closely related to the electromagnetic content of the shower and "long" component, is closely related to the pure hadronic content of the shower

R. K. Bock, T. Hansl-Kozanecka, T. P. Shah, Parametrization of the longitudinal development ofhadronic showers in sampling calorimeters,Nucl. Instrum. Meth.186(1981) 533.

Radial profile is the distribution of the energy density as a function of the radial distance to the shower centre of gravity

Radial distance, $r_i = \sqrt{(x_i - x_0)^2 + (y_i - y_0)^2} x_i$, y_i are the position of the centre of the ith cell

The radial profiles are parametrised with the sum of two exponential functions which describe the behaviour near the shower axis ("core" component close to the shower axis) and at the shower periphery ("halo" component distant from the shower axis)

$$\frac{\Delta E}{\Delta S}(r) = A \cdot \left\{ f \cdot \frac{e^{\frac{-r}{\beta_{core}}}}{\beta_{core}} + \left(1 - f\right) \cdot \frac{e^{\frac{-r}{\beta_{halo}}}}{\beta_{halo}} \right\} \quad \begin{array}{l} \text{where,} \\ \text{A: scaling factor} \\ \text{f: electromagnetic fraction} \\ \beta_{\text{core}} \text{ and } \beta_{\text{halo}} \text{: slope parameters} \end{array}$$

 ΔE is the energy density, and $\Delta S = 2\pi r \Delta r$ is the area of a ring of width Δr at a distance r from the shower axis

Procedure

 \rightarrow One common method for finding an optimum fit is to minimize a χ^2 function

 \rightarrow The idea is to first fit the profiles separately, but the goal is to perform a combined fit in the end

$$\begin{aligned} \mathsf{Longitudinal} \quad \Delta E(z) &= A \cdot \left\{ \frac{f}{\Gamma(\alpha_{short})} \cdot \left(\frac{Z[X_0]}{\beta_{short}} \right)^{\alpha_{short}-1} \cdot \frac{e^{\frac{-Z[X_0]}{\beta_{short}}}}{\beta_{short}} + \frac{1-f}{\Gamma(\alpha_{long})} \cdot \left(\frac{Z[\lambda_I]}{\beta_{long}} \right)^{\alpha_{long}-1} \cdot \frac{e^{\frac{-Z[\lambda_I]}{\beta_{long}}}}{\beta_{long}} \right\} \end{aligned} \\ \mathsf{Radial} \quad \frac{\Delta E}{\Delta S}(r) &= A \cdot \left\{ f \cdot \frac{e^{\frac{-r}{\beta_{core}}}}{\beta_{core}} + (1-f) \cdot \frac{e^{\frac{-r}{\beta_{halo}}}}{\beta_{halo}} \right\} \end{aligned} \\ \\ \chi^{2}_{(LONGITUDINAL+RADIAL)} &= \sum_{i}^{N_{LONGITUDINAL}} \frac{(\mu_{iLONGITUDINAL} - f_{iLONGITUDINAL}(\alpha, \beta, f_{em}))^{2}}{\sigma_{iLONGITUDINAL}^{2}} + \sum_{i}^{N_{RADIAL}} \frac{(\mu_{iRADIAL} - f_{iRADIAL}(\beta, f_{em}))^{2}}{\sigma_{iRADIAL}^{2}} \end{aligned}$$

f_{iLONG} and f_{iRAD} : expected value of longitudinal and of radial model

 μ_{iLONG} and μ_{iRAD} : i_{th} measurement of radial and of longitudinal

 σ_{iLONG} and σ_{iRAD} : uncertainty of i_{th} measurement of radial and of longitudinal

Fits to longitudinal and Radial profiles

- → 38 points are available for the longitudinal fit up to a depth of ~4.4 λ_{l} . Each bin in longitudinal direction corresponds to ~0.11 λ_{l}
- → The "long" component of the longitudinal profile which dominates in the shower tail, is accompanied around shower maximum by the "short" component
- → For the radial fit, the fine transverse granularity provides 39 points in the range from 0 to 390 mm. Each bin width corresponds to one third of the transverse size of the 30×30 mm² cell
- \rightarrow The data set includes statistical uncertainties only

Mean energy from shower start

Behaviour of longitudinal Parameters

Behaviour of radial Parameters

- → The parameter β_{core} characterises the radial shower development near the shower axis and is related to the angular distribution of secondary π^0 s from the first inelastic interaction
- \rightarrow The behaviour of β_{core} parameter decreases with energy
- \rightarrow In the tail, slope parameter β_{halo} is nearly constant
- \rightarrow Need to check the outlier for β_{halo} at 30 GeV

The average electromagnetic fraction

 \rightarrow The EM-fraction shows on average 80% and 60% for radial and longitudinal respectively

Summary & Outlook

- \rightarrow Fitting shower shapes has potential to improve calorimeter measurements
- → Fits are performed on the data set as a first step using the χ^2 minimization on the longitudinal and radial functions to obtain the EM-fraction independently
- \rightarrow The obtained EM-fraction for radial is ~80% and 60% for longitudinal
- → To compare the results from the physics prototype (physics prototype obtained EM fraction of ~20%, in the current analysis the EM fraction is ~60%)
- \rightarrow The measured results will be compared between MC of different physics list
- \rightarrow The parameters of the "short" component to be compared with those of electromagnetic showers
- \rightarrow Furthermore, as a qualitative results a systematic study will be included
- → This method will be followed in the future to perform a 3D modelling of the longitudinal and radial profiles
- \rightarrow Perform combined (Longitudinal + Radial) χ^2 minimization to obtain the electromagnetic fraction

Outlook

- → The combined fit technically works, but needs further investigation
- → For example: radial fit looks reasonable, but the longitudinal fit looks bad!

THANK YOU

Results from physics prototype https://arxiv.org/pdf/1602.08578.pdf

Data sample for longitudinal profile

p_{beam} ,	$\alpha_{\rm short}$	β_{short} ,	f	$\alpha_{\rm long}$	$\beta_{\text{long}},$	$\beta_{\rm core},$	$\beta_{\rm halo},$
GeV/c		X_0			λι	mm	mm
10	4.6±0.5	1.4±0.2	0.19±0.02	$0.92{\pm}0.02$	$1.30{\pm}0.04$	25.0±0.7	81±2
15	4.5 ± 0.4	1.5 ± 0.1	$0.20{\pm}0.02$	$1.10{\pm}0.02$	1.22 ± 0.03	$23.4{\pm}0.6$	78±2
30	4.5 ± 0.3	1.6±0.1	$0.23 {\pm} 0.01$	1.35 ± 0.02	$1.24{\pm}0.02$	20.6 ± 0.5	76±1
40	4.3±0.3	1.8±0.1	0.23 ± 0.01	$1.44{\pm}0.01$	1.27 ± 0.02	20.2 ± 0.5	75±1
50	4.2 ± 0.2	1.9±0.1	$0.24{\pm}0.01$	$1.50{\pm}0.01$	1.27 ± 0.02	19.9±0.4	74±1
60	4.2 ± 0.3	1.9±0.2	0.23 ± 0.01	1.56 ± 0.02	$1.24{\pm}0.02$	19.7±0.4	74±1
80	$4.4{\pm}0.3$	1.9±0.2	$0.23 {\pm} 0.01$	1.61 ± 0.01	1.26 ± 0.03	$19.5 {\pm} 0.4$	74±1