

### **AHCAL Timing**

### CALICE Collaboration Meeting Everywhere 30.9.2020 Lorenz Emberger













Why do we need time information?

- Reject background
- Improve clustering







Why do we need time information?

- Reject background
- Improve clustering



Lorenz Emberger







Why do we need time information?

- Improve clustering
- components of hadronic showers?



Lorenz Emberger



MAX-PLANCK-INSTITU







## Time Calibration: Hardware

Lorenz Emberger



**MAX-PLANCK-INSTITUT** 





- 1. Common external clock with ~1ns bins
- 2. Ramp up voltage during one bunch crossing ID











- 1. Common external clock with ~1ns bins
- 2. Ramp up voltage during one bunch crossing ID
- 3. On hit, the current voltage is stored in one of 16 memory cells



MAX-PLANC







- 1. Common external clock with ~1ns bins
- 2. Ramp up voltage during one bunch crossing ID
- 3. On hit, the current voltage is stored in one of 16 memory cells
- 4. Digitized voltage (TDC readings) need to be calibrated against external clock



MAX-PLANCK-INS







- 1. Common external clock with ~1ns bins
- 2. Ramp up voltage during one bunch crossing ID
- 3. On hit, the current voltage is stored in one of 16 memory cells
- 4. Digitized voltage (TDC readings) need to be calibrated against external clock





### Slope is common to all channels on a chip







## Time Calibration: Software







# Time Calibration: Software

- 1. Extract slope by plotting reference clock against TDC readings
- 2. Fit with linear function











- 1. Extract slope by plotting reference clock against TDC readings
- 2. Fit with linear function
- 3. Calculate hit time by

$$t_{hit}[ns] = TDC_{hit} \cdot Slope \left[\frac{ns}{TDC}\right] + Offset [ns] - T_0$$











- 1. Extract slope by plotting reference clock against TDC readings
- 2. Fit with linear function
- 3. Calculate hit time by

$$t_{hit}[ns] = TDC_{hit} \cdot Slope \left[\frac{ns}{TDC}\right] + Offset [ns] - T_0$$

Hit time distribution



**MAX-PLANCK-I** 













Satellite peaks related to ASIC state at the end of a readout cycle:

- Extracted from EUDAQ raw file
- Calibration constants for each possible state, depending on bunch crossing parity







Satellite peaks related to ASIC state at the end of a readout cycle:

- Extracted from EUDAQ raw file
- Calibration constants for each possible state, depending on bunch crossing parity



### MAX-PLANC







Occupancy correction with Pions to reach deeper layers:

• Cut on hit time to reject late hadronic energy depositions





Occupancy correction with Pions to reach deeper layers:

Cut on hit time to reject late hadronic energy depositions







Occupancy correction with Pions to reach deeper layers:

Cut on hit time to reject late hadronic energy depositions







Occupancy correction with Pions to reach deeper layers:

Cut on hit time to reject late hadronic energy depositions









Reconstructed hit times include all the effects in the readout chain:

- Trigger resolution (~1 ns for BIF Trigger)
- Intensity/occupancy dependent effects on the chip  $\bullet$
- Calibration related

### Single Channel Time Resolution



MAX-PLANCI





Reconstructed hit times include all the effects in the readout chain:

- Trigger resolution (~1 ns for BIF Trigger)
- Intensity/occupancy dependent effects on the chip
- Calibration related

Obtain single channel time resolution by taking time difference in subsequent channels: Use MIP tracks in testbeam mode and ILC mode

### Single Channel Time Resolution







Reconstructed hit times include all the effects in the readout chain:

- Trigger resolution (~1 ns for BIF Trigger)
- Intensity/occupancy dependent effects on the chip
- Calibration related

Obtain single channel time resolution by taking time difference in subsequent channels:

Use MIP tracks in testbeam mode and ILC mode

**Bunch clock speed: 250kHz Bunch clock speed: 5MHz Bunch crossing length: 4000ns Bunch crossing length: 200ns** 

## Single Channel Time Resolution



MAX-PLANCK-INSTITU





Single channel resolution:  $2.859/\sqrt{2} = 2.014$  ns

Lorenz Emberger

## Single Channel Time Resolution



**MAX-PLANCK-INSTITU** 





Single channel resolution:  $2.859/\sqrt{2} = 2.014$  ns

Lorenz Emberger

Single channel resolution:  $1.1/\sqrt{2} = 0.78$  ns



Fit range dependent

Single channel resolution:  $2.859/\sqrt{2} = 2.014$  ns

Lorenz Emberger

Single channel resolution:  $1.1/\sqrt{2} = 0.78$  ns









MAX-PLANCK-INSTITUT







 $\implies$  Toy Monte Carlo



MAX-PLANCK-INSTITU

- Investigate jitter on crossing of the threshold for same energy







- Investigate jitter on crossing of the threshold for same energy  $\implies$  Toy Monte Carlo
- - Energies=[5pe, 10pe, 15pe, ...], Threshold = 3pe (for example)  $\bullet$



**MAX-PLANCK** 







- Investigate jitter on crossing of the threshold for same energy  $\implies$  Toy Monte Carlo
  - Energies=[5pe, 10pe, 15pe, ...], Threshold = 3pe (for example)
  - Draw pe times from model light curve [t<sub>1</sub>, t<sub>2</sub>, t<sub>3</sub>,..., t<sub>pe</sub>]











Investigate jitter on crossing of the threshold for same energy  $\implies$  Toy Monte Carlo

- - Energies=[5pe, 10pe, 15pe, ...], Threshold = 3pe (for example)
  - Draw pe times from model light curve [t<sub>1</sub>, t<sub>2</sub>, t<sub>3</sub>,..., t<sub>pe</sub>]
  - Sort times, take t<sub>3</sub> as crossing time (maybe add noise)



MAX-PLAN









Investigate jitter on crossing of the threshold for same energy  $\implies$  Toy Monte Carlo

- - Energies=[5pe, 10pe, 15pe, ...], Threshold = 3pe (for example)
  - Draw pe times from model light curve [t<sub>1</sub>, t<sub>2</sub>, t<sub>3</sub>,..., t<sub>pe</sub>]
  - Sort times, take t<sub>3</sub> as crossing time (maybe add noise)
  - Repeat e.g. 10000 times, investigate resulting distribution



MAX-PLAN









Investigate jitter on crossing of the threshold for same energy  $\implies$  Toy Monte Carlo

- - Energies=[5pe, 10pe, 15pe, ...], Threshold = 3pe (for example) Draw pe times from model light curve [t<sub>1</sub>, t<sub>2</sub>, t<sub>3</sub>,..., t<sub>pe</sub>] • Sort times, take t<sub>3</sub> as crossing time (maybe add noise)

  - Repeat e.g. 10000 times, investigate resulting distribution



How does the width scale with rising energy?

Lorenz Emberger



MAX-PLA







**DAQ Threshold: 3pe** Lowest Energy: 7pe

![](_page_34_Picture_5.jpeg)

**MAX-PLANCK-INSTITUT** 

![](_page_34_Figure_8.jpeg)

![](_page_35_Picture_0.jpeg)

### **DAQ Threshold: 3pe Lowest Energy: 7pe**

![](_page_35_Figure_2.jpeg)

![](_page_35_Picture_6.jpeg)

**MAX-PLANCK-INSTITUT** 

![](_page_35_Figure_9.jpeg)












Lorenz Emberger









Lorenz Emberger









Lorenz Emberger

### **DAQ Threshold: 6pe** Lowest Energy: 7pe









Lorenz Emberger













Lorenz Emberger











Lorenz Emberger











**Testbeam Mode - Muons** Only MIP tracks selected



Lorenz Emberger



**MAX-PLANC** 

**Energy bins[MIP]:** 0.5 to 0.7, 0.7 to 1.1, 1.1 to 1.5, 1.5 to 2.5, 2.5 to 5, 5 to MAX





**Testbeam Mode - Muons** 



Lorenz Emberger



MAX-PLANC





### **ILC Mode - Electrons** Only tracks selected





**Energy bins[MIP]:** 0.5 to 0.7, 0.7 to 1.1, 1.1 to 1.5, 1.5 to 2.5, 2.5 to 5, 5 to MAX

Energy dependent single channel resolution:

<1ns for higher energies</li>

• But: Low statistics, DAQ issue  $\implies$  further investigation





Calibration and correction in place, also in Software

Single channel time resolution in ILC mode ~0.78ns, design goal reached

Energy dependency of time resolution confirmed

- In full read-out chain and single channel resolution
- Toy MC, confirm with data in the future







### Backup

Lorenz Emberger



MAX-PLANCK-INSTITUT FÜR PHYSIK





### Dataset: 60GeV Electrons









### Dataset: 60GeV Electrons



Time resolution is the sigma of a gaussian fit to every distribution

Lorenz Emberger









Lorenz Emberger







Lorenz Emberger







Lorenz Emberger









Lorenz Emberger









Lorenz Emberger







Lorenz Emberger







### Correction on Channel Level <del>C.</del>

Split dataset in 4 categories by selecting BxID parity and gain mode

Fit individual channels: Correction = slope x occupancy + offset



Lorenz Emberger



MAX-PLANCI







Lorenz Emberger









MAX-PLANCK-INSTITUT FÜR PHYSIK













Lorenz Emberger









Lorenz Emberger



**MAX-PLANCK-INST** 



Channel wise correction outperforms global correction by ~1ns

Problem: Electromagnetic showers don't extend over the full depth

 $\implies$  Try using Pions



# Correcting with Pions

Correction obtained with a 40GeV Pion Run from June2018:

- Cut on hit time +- 50ns to reduce influence of late hits on the correction factors, inspired by most shifted channels seen in electron runs
- Fit individual channels: Correction = slope x occupancy + offset



### Correcting with Pions **C**

Correction obtained with a 40GeV Pion Run from June2018:

- Cut on hit time +- 50ns to reduce influence of late hits on the correction factors, inspired by most shifted channels seen in electron runs
- Fit individual channels: Correction = slope x occupancy + offset



Lorenz Emberger









Lorenz Emberger











Data Quality Selections:

- 500ns < BIF Time < 2500ns
- Hit Time < 3500ns
- Number of Hits > 180
- 200 < Depth of COG < 800



<del>Ce</del>



MAX-PLANCH

Data Quality Selections:

- 500ns < BIF Time < 2500ns
- Hit Time < 3500ns
- Number of Hits > 180
- 200 < Depth of COG < 800





Divide spectrum into prompt (10ns), elastic (50ns) and capture part

Compare to MC with 5ns time smearing

<del>Ce</del>



MAX-PLANCH

Data Quality Selections:

- 500ns < BIF Time < 2500ns
- Hit Time < 3500ns
- Number of Hits > 180
- 200 < Depth of COG < 800





### A Look at Pions - Hit Energy

Lorenz Emberger





## A Look at Pions - Hit Energy







## A Look at Pions - Hit Energy








# 

## A Look at Pions - Hit Energy



Lorenz Emberger







# 

## A Look at Pions - Hit Energy



Lorenz Emberger







# 

## A Look at Pions - Hit Energy



Lorenz Emberger





A Look at Pions - Hit Energy 









## Disagreement in the low hit energy region





## A Look at Pions - Hit Radius









## A Look at Pions - Hit Radius









A Look at Pions - Hit Energy 



Overlap of prompt and elastic part in data

Similar shape of data and MC in the capture part















# Conclusion

Occupancy correction on channel level outperforms global correction by ~1ns Time resolution for showers @  $\sim$ 5.5ns  $\implies$  Correction over the full depth possible with pion showers

Compared to MC, the prompt and elastic part still overlap  $\implies$  broadening of the hit time distribution with rising occupancy not fully corrected



MAX-PLANC





## Hit Radius - Data vs MC









## Global Correction







## Global Correction



- Occupancy correction shifts the mean to ~0 ns



MAX-PLANCK-INST



Time resolution is the sigma of a gaussian fit to every distribution

Time resolution is increased from ~45ns to ~18ns for occupancy of 19

