Energy reconstruction of hadronic showers in SDHCAL for 2015 TB data

Bing Liu On behalf of SDHCAL group

Sep 29, 2020

Outline

- Introduction for combined beam data
- Event selection
 - Muon rejection
 - Electron background check & rejection
- Linearity and resolution
- Conclusion

Combined beam data analysis

- Data samples were taken at PS(3 -11 GeV), May 2015 SPS data (10-80GeV) taken at SPS.
- Contamination :
 - PS: muons , electrons(since using electron eliminator in test beam period, the electron contamination is negligible except 3-5GeV samples)
- Simulation: FTF_BIC , geant4.9.6

Muon background rejection

MeanRadius of muon track

The shower radius is very small < 15mm(≈1.5pad size)

MeanRadius of pion shower

Larger shower radius than muon

Event selection: muon rejection

Electron background

- Method: Boosted decision tree (BDT)
- Training set:
 - Electron 1-80GeV, 10000 events per GeV
 - Pion 1-80GeV, 10000 events per GeV
- Test set: the same size

 Input variables: Begin, nTrack, nCluster, radius, nHit/nLayer, density, nHit1/nHit, nHit3/nHit, nShowerlayer/nLayer

Model Performance

A good agreement between training and validation sets.

Pion beam validation for 6-11GeV

We know there is no electron for 6-11GeV pion beam. These two results confirm it.

Electron check for pion beam 3-5GeV

The electron contamination is almost negligible. Applying BDT value cut > 0.0 is enough to reject electron-like events

Apply the muon rejection and electron rejection

The number of hits before and after selection

 Feeding combined data, PS (3-11GeV) + SPS (20-80GeV).

$$E_{reco} = \alpha N_1 + \beta N_2 + \gamma N_3$$

 \Rightarrow N₁ = Nb. of hits with 1st threshold < signal < 2nd threshold \Rightarrow N₂ = Nb. of hits with 2st threshold < signal < 3nd threshold \Rightarrow N₃ = Nb. of hits with signal > 3rd threshold N_{tot} = N₁ + N₂ + N₃

 α, β, γ are parameterized as quadratic functions of N_{tot} \rightarrow They can be determined by minimizing a χ^2

$$\chi^{2} = \sum_{i=1}^{N} \frac{(E_{beam}^{i} - E_{reco}^{i})^{2}}{\sigma_{i}^{2}} \qquad \sigma_{i} = \sqrt{E_{beam}^{i}}$$

The double sided Crystal ball are applied.

The double-step Gaussian applied.

The double sided Crystal ball are applied.

The double-step Gaussian applied.

The common energy point 10GeV, for both PS and SPS.

Linearity and resolution

Conclusions & Next

- The BDT model is robust and it can separate electron and pion events of beam data.
- The resolution of combined beam data is in agreement with SPS data.
- Systematic uncertainty studied.

Backup

$$N \cdot \begin{cases} e^{-0.5t^2} \\ e^{-0.5\alpha_{\text{low}}^2} \left[\frac{\alpha_{\text{low}}}{n_{\text{low}}} \left(\frac{n_{\text{low}}}{\alpha_{\text{low}}} - \alpha_{\text{low}} - t \right) \right]^{-n_{\text{low}}} \\ e^{-0.5\alpha_{\text{high}}^2} \left[\frac{\alpha_{\text{high}}}{n_{\text{high}}} \left(\frac{n_{\text{high}}}{\alpha_{\text{high}}} - \alpha_{\text{high}} + t \right) \right]^{-n_{\text{high}}} \end{cases}$$

if
$$-\alpha_{\text{low}} \le t \le \alpha_{\text{high}}$$

if $t < -\alpha_{\text{low}}$
if $t > \alpha_{\text{high}}$,