ILD simulation for Sc-ECAL

Naoki Tsuji, The University of Tokyo Wataru Ootani, Jeans, Daniel CALICE Collaboration Meeting Everywhere, 28-30 Sep. 2020

Alveolar

structure

Fastening

system (rails)

Sc-ECAL

- Scintillator Electromagnetic CALorimeter (Sc-ECAL)
 - Technology option of EM calorimeter for ILC and CEPC
- Based on scintillator strips readout by SiPM
 - 5 × 45 × 2 mm³ scintillator strip
- Virtual segmentation : $5 \times 5 \text{ mm}^2$ with strips in x-y configuration
 - # readout channels significantly reduced ($10^8 \rightarrow 10^7$)
 →Low cost
 - Retaining performance comparable to real 5 × 5 mm² segmentation
- Timing resolution < 1 ns</p>

86.

Previous study

- R. Terada done ILD simulation for Sc-ECAL
 - ILD version is old one: v01-19
 - Calibration parameter is different from the latest result
 - 7 MipPe is small
- The objective of this talk is to calibrate the parameters for Sc-ECAL using the latest ILD model
 - Final goal of this study is to evaluate the Sc-ECAL performance with the latest ILD version

Simulation Parameter

DD4hep

- Both Sc and Si sensor
- Compare two models with same events
- ILD version: v02-01
- Detector model: ILD_I5_03_v02
- Use default Pandora PFA parameters

Calibration parameters decided as below at new ILD model

ppd_mipPe (p.e.)	10
ppd_npix (pixel)	10000
EcalBarrel/EndcapMip	0.0002629 0.0002655
EcalBarrel/ EndcapEnergyFactors	0.00758 0.01515 0.00810 0.01619
PandoraEcalToEMScale	1.031

MIP calibration

- EcalBarrel/EndcapMip calibration done
 - Data: 10 GeV muon
 - Collection: EcalBarrel/EndcapCollection
 - Fit: langaus function
- The peak of hit energy is the value of MipPe.
- Independent calibration with barrel and endcap

Event

Energy Factors calibration

CosTheta vs. EnergySum

Energy factors calibration done

- Data: 10 GeV gamma
- Collection: MCParticle, EcalBarrel/EndcapCollectionRec
- Fit: gaussian
 - Range: ±1.5 × sigma
- Multiply the factors by 10/peak

Entries

Energy [GeV]

Std Dev 0.6423

Mean

487

10.56

Energy [GeV]

5

Energy Factors calibration

- Sum of hit energies are located 10 GeV accurately
 - Both at barrel and endcap

EM scale calibration

- PandoraEcalToEMScale calibration done
 - Data: 10 GeV gamma
 - Collection: MCParticle, PandoraPFOs
 - Fit: gaussian
 - Range: ±1.5 × sigma
- Multiply the factors by 10/peak

1.031

EM scale calibration

Sum of PFO energies are located 10 GeV	ppd_mipPe (p.e.)	10
Both at barrel and endcap	ppd_npix (pixel)	10000
Calibration completed	EcalBarrel/EndcapMip	0.0002629 0.0002655
	EcalBarrel/	0.00758 0.01515
	EndcapEnergyFactors	0.00810 0.01619

PandoraEcalToEMScale

Energy linearity

Injection gamma at different energies

- 5, 10, 20, 30, 40, 50, 100, 200 GeV
- Check the peak of PFO energy
- Energy linearity is good
 - A bit shift to large at the large energy injection
 - Gap filter for Si-ECAL is implemented, but not working properly

Energy resolution

Energe	gy r	esolut	tion is	cal	culated	using	PFO
© F	it :	$(\frac{\sigma_E}{E})^2$	$=\left(\frac{a}{\sqrt{a}}\right)$	$\overline{\overline{E}})^2$ -	$+ (b)^2$		

- 16% resolution achieved
 - Reasonable result for Sc-ECAL
 - Comparison with Si-ECAL will be done

	Barrel	Endcap
Stochastic a	16.1	16.5
Constant b	1.97	1.99

energy resolution vs. true photon energy

New sample with v02-01-02

New test production sample with ILCSoft v02-01-02

Created by H. Ono, A. Miyamoto

Detector model

- ILD_I5_01_v02 (AHCAL + Si-ECAL)
- ILD_I5_o3_v02 (AHCAL + Sc-ECAL)
- Contents at ILD_I5_o3_v02:
 - Single muon and single photons
 - 2f-JER (di-samples)
- Check the performance of single photon event
 - Energy linearity
 - Energy resolution

Energy linearity with new sample

- The linearity is a bit worse compared to previous sample
 - Gap filter not implemented
 - Now preparing gap filter for Sc-ECAL

Energy resolution with new sample

- 16% resolution with 2% constant
 - Almost the same as the previous sample

	Barrel	Endcap
Stochastic a	16.3	15.8
Constant b	2.05	2.16

energy resolution vs. true photon energy

Summary and prospects

- ILD simulation for Sc-ECAL
 - Parameter calibration for Sc-ECAL with new detector model
- Calibration completed
 - MIP, energy factors, EM scale
 - Energy linearity is good
 - Gap filter for Sc-ECAL is needed
 - Energy resolution is reasonable
- Preparing the gap filter for Sc-ECAL
 - Set different parameters according to x-y strip orientation
- Evaluate the saturation effect
 - Apply real saturation curve measured by UV laser
 - See my talk about saturation study at the CALICE meeting last year
 - Preparing new setup for more accurate measurement
- Evaluate the performance of jet sample

Backup

