

Particle Separation with PandoraPFA in the AHCAL

Linghui Liu ICEPP, University of Tokyo

CALICE Collaboration Meeting Everywhere

Sep. 28-30, 2020

Particle Separation Study with TB Data

- Study particle separation performance with large prototype data
 - Track : information from wire chambers
 - Neutral event : initial track removal
 - Two-particle event : event merging
- AHCAL standalone performance
- Compare with GEANT4 to validate simulation

Failure to resolve neutral hadrons

Reconstruct fragments as separate neutral hadrons C13-04-22.4, p.305-315

Delay Wire Chamber

For beam tracking, we had four wire chambers in front of the detector

- ▶ 100 x 100 mm² chamber with wire readout
- Hit position is readout as TDC
- Four channels for each chamber: up, down, left, right
- Hit position is reconstructed as
 - x = (left right) * slope + offset
 - y = (down up) * slope + offset
- Position resolution of ~600 um

Shower Merging

- Existing overlaying processor
 - Aims to overlay BG events
 - Randomly pick BG event to overlay
 - Overwrite existing collection
- New features required
 - Event position shifter
 - Keep original collections
 - Each hit stores information which shower they came from
 - 0.5 MIP applied after merging

Particle Separation

- 10 GeV (pseudo-)neutral shower reconstruction
 - Alone
 - Next to 30 GeV charged hadron
- Event merger : used existing one
 - No shifter, no afterwards threshold
 - Picked two events with distant center positions
 - Shower distance vary from event to event
 - Took mean distance as representative

Energy Correction Errors

- (Energy reconstructed beside charged hadron) (Energy reconstructed alone) measured for different distances
- Typical bump around -7 GeV
 - Events where most of hits in neutral shower classified to charged
 - Peak of neutral shower energy is @7-8 GeV

Comparison to Previous Study

Previous prototype study JINST 6 P07005

Separation Efficiency

9

Summary

- > Performance of particle separation is crucial for the Particle Flow Algorithm
- Tools for sample event creation has almost been done
 - Algorithm to generate pseudo-neutral particle by removing the initial track from charged shower is developed
 - Overlaying two showers and adding track information are almost done
- PFA studies ongoing
 - Shower profile study with one particle events
 - Particle separation study with merged charged+neutral showers
 - Preliminary study on energy reconstruction for overlaid particle
 - Not yet reaching the previous results
 - Proper event selection, careful calibration and optimization
 - Study with simulated data in pararrel

Prospects

- Separation study with various conditions
 - Energy reconstruction, separation efficiency
 - Shower energy, distance, depth
- Validation of GEANT4 simulation
- Simulation study with full detector setup : Vertex, Tracking, ECAL, HCAL ...
 - Two hadron separation
 - Photon + Hadron separation (ECAL + HCAL combined)
- Further improvement of the clustering algorithm to be done

Backup

12

7 GeV Bump

Energy diff

