

Extension of the e-Long Slab

<u>V. Boudry</u>, J.C. Brient, F. Jimenez, R. Guillaumat, M. Louzír, J. Nanní, Th. Dos Santos , H. Videau

Institut Polytechnique de Paris

CALICE Meeting "everywhere" 28/09/2020

1st 'electric long slab' (2018)

Support of interface boards + 12 ASUs (DBD)

- 2+6+4 ASUs = ~3.2 m
- Rotatably along long axis (for beam test)
 Rigidity : ≤ ~1 mm per ASU
- Total access to upper and lower parts
 - 320µm Baby wafers (4×4 pixels) on the bottom

Signal over Noise ratios

The signal-to-noise ratio is defined as the mostprobable-value (mpv) of a mip* divided by the pedestal width.

- in highly granular (self-triggering) calorimeters, a noise cut above 5–6 σ is mandatory, while a cut at ½ mip will ensure a good efficiency, resulting in S/N>10–12.
- A constant S/N ~ 19 is observed in the readout branch unaffected by the variations of the gain along the slab.
- mip* = [punch-through electron]

DESY-2018 beam test

2 weeks beg of July: full test of all prototypes:

- Electric long slab: 8 FEV11 + baby-wafers
- Very clean response to "mip" (punch through e-)
- 1/2h beam on each ASU @ 0, 45, 60°

common_calib_ls_ASU1_angle0_dif_1_1_1.raw

Electronics adjustments

Path length induced reflexions on clock line

- Fluctuation over logical level
- Extra clock tick \rightarrow bad ASIC configuration
- RC filter adaptation (Sigrity simulation)
- Impedance adaptation required depending on length
 - Limited to 8 FEV12 + baby-wafers
- Noise in the signal
 - High frequency perturbation in the HV line
 - Solved by RC filters on the HV line
 - Possible back-propagation of ASICs noisy channel through HV ?

Also issues on the data routing...

ASU: 11 years of R&D

Milestone Date Obiect Details REM Most complex element: electro-mechanical integration 1st ASIC proto 2007 SK1 on FEV4 36 ch, 5 SCA proto, lim @ Distrib / Collect signals from VFE (ASICs), 2000 mips Analog & Digital with dyn. range \geq 7500 1st ASIC 2009 SK2 64ch. 15 SCA 3000 mips - Mechanical placer & holder for Wafers \rightarrow precision 1st prototype of 2010 FEV7 8 SK2 COB a PCB Thickness constraints CIP (QGFP) 1st working PCB 2011 FEV8 16 SK2 (1024 ch) **FEV11-COB** 1st working ASU 2012 FEV8 4 SK2 best S/N ~ 14 FEV11 in BT readout (HG), no PP (256ch) retriggers 50-75% DIE + SMB 1st run in PP 2013 FEV8-CIP BGA. PP ASU 1st full ASU 2015 FEV10 4 units on test S/N ~ 17-18 equipped (High Gain) board with 4 Si-1024 channel retrigger ~ 50% wafers 1st SLABs FEV11 2016 7 units 7 units pre-calo 2017 **FEV 11** S/N ~ 20 (12)_{Tria} 256 P-I-N diodes 6-8 % masked 0.25 cm² each 9 x 9 cm² total area 1st technological 2018 SLABvFEV11 & SK2 & SK2a Improved S/N **ECAL** FEV13 SK2a+ (⊃timing) Timing... Compact stack Long Slab 8 ASUs **FEV13** 1st working COB 2019 **FEV-COB** 2×1/4 ASUs Vincent.Boudry@in2p3.fr

IS I LUI UUI LULU

Potential FEV13b? (202)?)

HPK « No 8" wafer bef. end 2021 »

FEV14: Design PCB just started

- Compatible 8' et 6'' wafers ; \rightarrow dimensions 1.5 (18×27 cm²)
 - 6 Matrices 6" OR 2 × 1,5 Matrices 8"
- 24 ASICs vs 16 ASICs
 - Less cards \Rightarrow Less connections
- Improved scalability & maintenance
 - 1 HV per card \Rightarrow independent test, exchangeability
 - Bloc diagrams ⇔ Sharing BGA / COP ?
- LV Regulation on board with LDO?
 - + monitoring ? T°, V, ID (\Leftrightarrow DB)
- Corrected data & clock distributions
 - Must be OK for 2,1 m (EndCaps) = 8 FEV14 (12 FEV12)
 - Timing \leq 0,1 ns ? \rightarrow for SK3 ?
- Compatibility new DAQ (≠ FEV13)

Artist view, non-contractual !

Extension of e-Long SLab | CALICE meeting | 28/09/2020

Vincent.Boudry@in2p3.fr

A Long Slab with "FEV13b"

Adaptative design wrt FEV12

- Integration of new DAQ with Power Scheme
 - (see Jihane presentation)
- Possibility to include FEV13b-COBs in LS

Modular design :

- Incremental length
- Full equipped ends of SLAB
 - 1st and Last ASU
 - Regulators / Decoupling on each ASU
 - Shower response at end of SLAB
 - Possible integration new ASU's in stack

Extension of e-Long SLab | CALICE meeting | 28/09/2020

First steps (2020):

Test LDO's scheme in situation

- Several implementation on small insert mezzanine between ASU's
- Measure stability and behaviour in PP
- Implement the interface with SLBoard (v2)
 - for Power Pulsing testing
 - remove / raise current limitations

Package additionnal SK2a's

- Test them

Compatible with GradConn

Implication of HL schemes

Higher $\mathscr{L} \Rightarrow$

- Occupation / bunch train -
 - More memory for events
 - But large margins

Higher repetition rates × longer bunch

- Power =
$$f_{rep} \times \sum P_{ASIC_part} \times \tau_{spill_part}$$

•
$$\tau_{\text{spill}} = \tau_{\text{Ramp-up}} + \tau_{\text{Train}} + \tau_{\text{Conv}}$$

= $\mathcal{O}(\mu s) + \{ \dots \} + \mathcal{O}(100' s \ \mu s)$

- $\tau_{\text{Train}} = \Delta T_{\text{bunches}} \times N_{\text{bunches}}$ - $\tau_{\text{Conv}} \propto (\text{occupancy} + \text{Noise} \ge \text{thr.})$

Critical also for Power budget

\Rightarrow Full ZERO suppr. needed

HL-CLIC: HL-ILC: $-\mathcal{L} \times 2$ $-\mathscr{L} \times 4(6)$ $-N_{\text{hunches}} \times 2: \tau_{\text{Train}} \to 2 \text{ ms}$ $-N_{\text{bunches}} \rightarrow : \tau_{\text{Train}} : 176 \text{ ns}$ $-f_{\rm rep} \times 2$ (3): 5 \rightarrow 15 Hz $-f_{\rm rep} \times 2:50 \rightarrow 100 \, {\rm Hz}$ Dominated by ACQ time: **Dominated by Set-up &** $P(\sim 25\mu W/ch) \times 6$ Conversion time: P (~82µW/ch) ×2 Power pulsing lines timing) mega READOUT IDLE CON ACQ 290mW PWR ON A (DAQ) PWR ON DAC (DAQ) SK2 chips PWR_ON_D (DAQ) PWR_ON_ADC (DAQ) 90mW 64 ch full conversion PWR_ON_D_Internal (POD) 26mW CONVERSION: HARDROC2: NO conversion SPIROC2: max time (Full chip)= 16 SCAx 2 (HG or LG/Time) x103 µs=3.2ms SKIROC2: max time (Full chip)= 15 SCA x2 (HG or LG/Time) x103 µs 3 ms

READOUT:

HARDROC2: 127 (memory depth)x [64 channelsx 2 trigger bits + 24 BCID bits + 8 Header bits]=20 320 bits => 200 nsx20k=4 ms/ Full Chip (WORST case) SPIROC2: 16 SCAx2 (HG or LG/Time) x 36 ch x 16 ADC bits + 16 SCAx16 BCID bits + 16 Header bits= 18 704 bits => 3.8 ms/Full Chip (Worst case) SKIROC2: 15 SCAx2 (HG or LG/Time) x 64 ch x 16 ADC bits + 15 SCAx16 BCID bits + 16 Header bits= 30 976 bits => 6 ms/Full Fhip (Worst case)

Perspertive: Just In Time ?

Power & Thermal simulation to be reviewed

- HL scheme

Final ASIC \geq 2022

- Consumption & Timing

Vincent.Boudry@in2p3.fr Extension of e-Long SLab | CALICE meeting

 \Leftarrow achievable with LHC φ 2 ?

⊃ all mechanical constraints

We are standing here

/19

Back-up

Passive cooling

Active cooling → 'Continuous colliders'

R&D using CMS studies (Courtesy of Th. Pierre-Emile from CMS-LLR group)

Copper plate prototype dimensions information

Pipe insertion on a cooling prototype for FEA correlation

Pipe insertion on a cooling prototype

Vincent.Boudry@in2p3.fr

- Pipe insertion process introduces some efficiency loss due to the thermal contact resistance.
- The benefit remains significant with regard to a passive cooling

MIP fluctuation

2 systematic effects has been identified

- Bandgap discrepancy (over 128 ASICs).
 - σ =19.2 mV peak to peak=200mV
- Voltage linear decrease over slab length

Curve shape can be fitted by weighted sum of these two effects

MIP(ASU) = a * ASU + b - c * bandgap(ASU)

Solutions

- Reduce bandgap in ASIC design (already reduced in Skiroc2a version)
- Compensate bandgap by software
- Select ASICs to mitigate fluctuation
- Use fixed length power supply to avoid discrepancy

POWER PULSING in SK2

Requirement:

Acquisition

Conversion

Readout

- 25 µW/ch with 0.5% duty cycle
- 500 µA for the entire chip

Power estimations

mW P_ACQ P_CONV

P_CONV 90 P_RO 26

290

	TAU_PO/ms E_PO/µJ	Ται	I _SPILL/ms E	_ACQ/µJ	τau_CONV/ms	E_CONV/µJ	E_SPILL/µJ	f_rep/Hz	P_1	ΓΟΤ/μΨ Γ	P_TOT/µW/chRa	atio HL/Lumi
ILC	0,005	1,450	1,000	290,000	0,10	9	300,	45	5	1502,25	23,47	
HL-ILC	0,005	1,450	2,000	580,000	0,20	18	599,	45	15	8991,75	140,5	5,99
CLIC	0,005	1,450	0,176	51,040	0,02	1,58	54,	07	50	2703,7	42,25	
HL-CLIC	0,005	1,450	0,176	51,040	0,02	1,58	54,	07	100	5407,4	84,49	2

Mip analysis

MIP response vs position

mip MPV *cos(θ) vs ASU#

- OK for 4 1st ASU's
- − Small drop ~of signal ~2%/ASU for ≥ ASU#5
- Also hints similar drop on $\sigma_{_{\text{ped}}}$

67

⇒ Voltage & Gain drop ? Power pulsed mode with ballast et end of slab (or just random build-up effect from chip variability ?)