Status on e⁺e⁻ -> γZ process Jet Energy Calibration

Takahiro Mizuno

"Modified Method3"

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

The first equation (1) is an irrational equation!

-> We should be careful when removing radicals of $\sqrt{P_{J1}^2 + m_{J1}^2} \sqrt{P_{J2}^2 + m_{J2}^2}$. (Extraneous roots exist!!)

"Modified Method3"

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Modified criteria to choose the best answer

Choose the solution with

(i) Real and positive value with $\langle E_{CM}/2$ (ii) $\sqrt{P_{J1}^2 + m_{J1}^2} > 0$ and $\sqrt{P_{J2}^2 + m_{J2}^2} > 0$ (iii) P_{J1} , P_{J2} , $P_{\gamma} > 0$ (iv) solved P_{γ} closest to the measured P_{γ}

Problem: unexpected bump in reconstructed jet energy Method 3 Jet1 energy distribution Conventional M3 Modified M3

The bump disappeared.

Relative diff. of energy in each method

6

Trying to fit the distribution now.

- Double gaussian fitting is failed.
- Using MCtrue jet mass input -> NOT gaussian

Trying to fit the distribution now.

- Double gaussian fitting is failed.
- Using MCtrue jet mass input -> NOT gaussian

I gave a presentation at S&A meeting. In addition to the Method 3 modification, biases on photon in DBD sample are reported.

Trying to fit the distribution now.

- Double gaussian fitting is failed.
- Using MCtrue jet mass input -> NOT gaussian

I gave a presentation at S&A meeting. In addition to the Method 3 modification, biases on photon in DBD sample are reported.

- Jenny told me to use new sample (instead of DBD)
- Graham advised me to check mass consistency. Imposing some constraint or cut to improve the resoliution??

Backup

Based on 4-momentum conservation

• Several reconstruction methods (Method 1, 2', 2, and 3) are considered.

 ϕ : azimuthal angle

Method 2': Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine (P_{J1}, P_{J2})

 $\left\{ \begin{array}{ll} \left(\begin{array}{cc} sin\theta_{J1}cos\phi_{J1} & sin\theta_{J2}cos\phi_{J2} \\ sin\theta_{J1}sin\phi_{J1} & sin\theta_{J2}sin\phi_{J2} \end{array} \right) \begin{pmatrix} P_{J1} \\ P_{J2} \end{pmatrix} = \begin{pmatrix} 500sin\alpha - sin\theta_{\gamma}cos\phi_{\gamma}P_{\gamma} \\ -sin\theta_{\gamma}sin\phi_{\gamma}P_{\gamma} \end{pmatrix} \right.$

Method 2: Use measured P_{γ} as input and Ignore ISR Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2}, P_{\gamma})$ -> Determine $(P_{J1}, P_{J2}, P_{ISR})$

2 solutions for each sign of P_{ISR} -> choose the best answer which satisfies **1** better

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

The first equation (1) becomes a quartic equation of $|P_{ISR}|$.

- -> 8 Possible Solutions!
- (2 direction options of ISR × 4 solutions for each quartic equation)

Choose the solution with (i) real and positive value (ii) solved P_{γ} closest to the measured P_{γ}

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

$\sqrt{-}$	$\overline{P_{J1}^2 + r}$	$\overline{n^2}$	$\overline{P}_{J1} + \sqrt{P}$	$\overline{D2}$	$_{2} + m_{J2}^{2}$	+	$ P_{\gamma} + $	F	$P_{ISR} = \mathbf{E}_{\mathbf{CM}}$	
*:	******	**	***	***	***	** *	****	**	****	
*	Row	*	ESum	*	EISR	*	E _{J1}	*	$E_{J2} * E_{\gamma E} *$	

*	2	*	366.53696	*	72.535351	*	156.96777	*	58.569181 * 79.066051 *	
*	9	* *	298.62565	*	9.8457809	*	146.57377	*	25.051876 * 118.63231 *	
*	10) *	400.57065	*	1.3064283	*	203.00334	*	75.567307 * 121.25753 *	
*	11	*	426.27959	*	50.853665	*	152.64726	*	88.632330 * 135.13139 *	
*	12	*	333.03742	*	66.762206	*	141.00941	*	42.028016 * 84.256399 *	
*	16	*	282.4159	*	26.559148	*	16.589673	*	128.82622 * 111.20429 *	
*	19	* *	279.9828	*	54.639210	*	116.56381	*	15.418981 * 94.215952 *	
*	27	*	281.90901	*	69.992376	*	136.99227	*	<u>16.916738</u> * 59.932090 *	
*	33	*	382.44162	*	35.440445	*	147.82023	*	<u>66.621390</u> * 133.36070 *	
*	36	*	386.59473	*	54.612970	*	152.68251	*	68.912223 * 111.61674 *	
*	50) *	279.53136	*	15.377309	*	127.38918	*	15.142176 * 122.37568 *	
*	61	*	297.67282	*	13.505328	*	129.46546	*	24.207362 * 131.23656 *	
*	62	*	282.14231	*	47.540821	*	134.59052	*	16.551790 * 84.420444 *	
*	66	*	313.20207	*	3.2458796	*	154.15914	*	32.042931 * 124.63790 *	
*	68	*	290.91970	*	17.090852	*	141.20568	*	20.714028 * 112.41749 *	
*	70) *	1535.683	*	55.852535	*	714.16113	*	643.52186 * 123.50819 *	
*	72	*	296.60387	*	10.071965	*	144.07756	*	23.526305 * 119.37677 *	
*	142	*	360.68284	*	25.702743	*	145.96058	*	55.722258 * 134.05892 *	
*	172	*	339.58430	*	12.741662	*	150.33482	*	45.249473 * 132.17298 *	
*	177	*	2495.1260	*	20.447979	*	1122.7955	*	1244.3305 * 108.01703 *	