

• Jet Clustering algorithms in LCFIPlus

• Consideration for coming training samples for flavour tagging

R. Yonamine (Tohoku U.)

Jet Clustering Algorithms

w/o Vertex info (Original)

Beam Jet Distance

Durham

on/off

Kt

on/off

Valencia

on/off

Jet Clustering Type = Base + Vertex(on/off) + BeamJet(on/off)

Related setting parameters in Marlin steering file

Parameter Name	Examples
JetClustering.JetAlgorithm	Durham, DurhamVertex, Kt, KtVertex, Valencia, ValenciaVerte
JetClustering.UseBeamJets	O, 1
JetClustering.RParameter	1.0, …
JetClustering.AlphParameter	1.0, …
JetClustering.BetaParameter	1.0, …
JetClustering.GammaParameter	1.0, …

Controllable from steering file

How Jet Clustering proceeds?

- 1) Define a distance between two tracks (or "pseudo tracks" : a bunch of tracks). 2) Combine two tracks if they give a minimum distance in all combinations. 3) Repeat 1) and 2) until when you are satisfied.

Remark 1)

"w/ Vertex" clustering feature is realized by adding a large value when you try to combine two pseudo tracks that have secondary vertices —>This prevents breaking secondary vertices during jet clustering.

Remark 2) similar to the above distance but the one beteen each jet and beam axis. background jets

Concurrently compute so-called "beam distance" (if UseBeamJets=1), which is —> This allows to make jets aligning to beam axis and can be recognized as beam

Distance : Durham/DurhamVertex

parameter : α

$$d_{ij} := 2 \frac{\min(E_i^2, E_j^2)}{E_{\text{visible}}^2} ($$

$$d_{iB}:=2lpha^2rac{E_i^2}{E_{
m visible}^2}(1-beam \, distance)$$

 $(1 - \cos \theta_{ij})$

 $-|\cos\theta_{iB}|)$

small α = strong beam jet rejection

parameter : R

$d_{ij} := \min((p_t^2)_i, (p_t^2)_j) \frac{\Delta R_{ij}^2}{R^2}$

 $d_{iB} := (p_t^2)_i$

(beam distance)

Distance : Kt/KtVertex

 $\Delta R_{ij}^2 := (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$

 η : rapidity ϕ : azimuthal angle

Distance : Valencia/ValenciaVertex

$$d_{ij} := 2\min(E_i^{2\beta}, E_j^{2\beta})^{(1)}$$

$$d_{iB} := E_i^{2\beta} \left(\frac{(p_t)_i}{E_i} \right)^{2\gamma}$$
(beam distance)

parameter : R, β , γ

 $\frac{(1 - \cos \theta_{ij})}{R^2}$

High priority

- $(\mathbf{1})$ 500 k events for each mode ISR on/off probably does not matter
- ② bb/cc/ss/uu/dd at 91 GeV 500 k events for each mode ISR off (back-to-back events)

uu/dd may not be necessarily separated, but ss would be convenient to work on s-tagging.

What training samples needed?

vvbb/vvcc/vvss/vvgg/vvuu/vvdd (ZH) at 250 GeV

Lower priority

1) bb/cc/ss/uu/dd at 250 GeV ISR off to remove radiative return events

2 Multi-tag samples at 250 GeV Any motivations?

