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Advances in L-band (~ 1GHz) SRF Cavity Gradient
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Superconducting Magnets for ILC ML
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ILC-ML SCQ: Requirements and Features

Parameter

Dimensions:
Mag. Field
Harmonics:
Field stability

Field
change/feedback

Alignments:

Low current for
low Cryog. Load

Cooling time:
(to be studied)

Performance Requirements/

Specifications

Beam-bore aperture: 78 mm
SCQ Pole aperture: 90 mm

Quad, G-integral: 38 T
Dipole, B-integral: 0.1 T

Quad. @ r=5mm: <1E-3
Skew Q @ r =5 mm, < 3E-4

During beam-pulse (1ms): 2E-5
Over beam-pulse (>>1 ms): 1E-3

Quad: 0.03 %/s to G-max,
Dipole: 0.6%/s to B-max

Rel. to BPM: 0.3 mm, 0.3 mrad.

Quad: <100 A
Dipole: =~ 40 A

Initial cooling: < 5 days,

Recovery after quench: <~ 30 min.

Features:

Magnetic field strength:
Maximum at Beam-Energy = 250 GeV because of optics,

Splittable Structure:

+ for the magnet assembly separated from SRF cavity
string assembly in clean room,

» Super-ferric (iron dominated) magnet preferred.

Conduction Cooling
* No LHe vessel w/ reliable alignment to BPM,
» Thermal anchoring to_two-phase He-pipe,

Alighment with Beam Position Monitor
» Alignment and Field stability is very important

Pulsive Operation in small faction
* For beam orbit correction and feedback

Sustainability against Dark Current (DC):
+ Heat absorption and radiation hardness against DC




SC Magnet Design for ILC Main Linac
in cooperation of Fermilab and KEK

Parameters Type - H.E.
(25~250 GeV)
——_- - L — i _1 piip— —

' Dimensions:
PITIVE e N = Vg Physical Length m 1.00

= Magnetic Length m 0.95
SC Magnet (Q+D) Iron-Pole Radius m 0.045
Quadrupole field:
Field Gradient (G) T/m 40
G-Integral (required) T 38
Bg at pole T ~1.8
i Dipole field:
Bp T 0.105
B-Integral (required)” Tem 0.10
B-max
at Pole T ~1.9
in Coill T <3

A. Yamamoto, '20-07-30



SC magnet design to be well harmonized with
high-gradient SRF cavity “clean” fabrication

 Split-able quadrupole demanded for the
assembly to be separated from SRF cavity
string “clean” assembly.

« Conduction cooling enables the magnet
cryogen-free and eliminates the LHe
vessel.

A. Yamamoto, '20-07-30 6



Concept successfuly Courtesy: V. Kashikhin

demonstrated LCLS-Il Magnet in the Cryomodule
el Ay
T
R Magnet physical length
Magnet width/height mm 322/220
Magnet poles 3 Pole tip radius mm 45
Peak operating current A <50
Number of quadrupole coils 4
Number of dipole coils 8
T o —— '(I:')(()ﬁ(se of superconducting B
NbTi superconductor
diameter - . 0.5
Quadrupole inductance mH 82
Liquid helium temperature K 2.2
Quantity required (with 36
spares)

The magnet package for 2 prototypes will
be installed at the end of the cryomodule.
Magnet conductivly coolled through pure
Al thermal sinks.

Current Lead

LCLS-ll Director's Review, February 17-18 2015 9
A. Yamamoto, '20-07-30 7



An Issue in particular HG SRF Linac in future:

Dark-Current Electrons generated in SRF Cavities accelerated and
transported into the next SC magnets

DC e- flux @ <0.3> GeV/c, /
disributed in 0.04 m<r /

Dark Current electrons accelerated via Cavity
Courtesy: G. Rongli,

A. Yamamoto, '20-07-30



The Superconducting Magnets to be sustainable against
Dark-Current from High-Gradient SRF Cavities

« Dark Current needs to be inevitably assumed in high-gradient frontier
for SRF cavities,

» The dark-current electrons are accelerated along the down-stream SRF
cavity strings, and reach SC magnets, down-stream,

» Most of the electrons are deflected and the energy is absorbed in the
superconducting (SC) magnet, resulting heating.

« The SC magnet needs to be sustainable and harmonized with
advances in high-gradient frontier of the SRF cavity technology.

A. Yamamoto, '20-07-30 9



Heat Absorption in the ILC-ML SCM

Dark Current Heating in Simulation

By A. Sukhanov, N. Solyak et al., LINAC2016,

Beam Energy, GeV 5 10 15 125 250

Quad, W 0.07 0.15 0.22 135 1.7
Cavity, W 0.36 0.36 045 045 0.2
RF Unit, W 4.1 35 32 27 26

Peak Power loss Model:
dR~10 mm, Lz=30cm

O -I=—

A. Yamamoto, '20-07-30

Assumption of Power/Energy Deposition into SCM (Q/D)
* Dark current / cavity: <50 nA

* Power deposition:1.35W @ 125 GeV ---> <5W @ 500 GeV
e E=1Joule/1ms (with an interval time of 200 ms, or 5Hz)

Temperature rise (AT) due to E. Deposition, if no-cooling
« AT =(E/M)/cc, (assuming Cu@ 5 K)

= 1.3 K/pulse (1 ms),

< 6.5 K/sec,

Magnet sustainability in ~ 1 sec
— MgB,/Nb3Sn (Tc ~ 15 K, at 3 T, I/lc =50 %)
— NbTi (Tc~8K,at3T, l/lc =50 %) = approaching to Tc

10



Candidates Superconductors to be evaluated

T S S T

Critical Temp. @ O T and OA 9.2~9.5 K 39K 18.3 K
~8K@3T ~5K@3T (>~15K @ 3T)
Wire dia. (bare) mm 0.5 0.55 0.6
# filaments 7242 10 13,338
Filament dia. pm 3.7 <100 24
Twisted pitch mm 25 200 30
Cu: SC (ratio) 152 :1 1:1.2 0.19
RRR (Cu) 50 ~ 100 88 (RT/10 K), 40 (RT/-40K) >120
Critical Current A 20A@5T,4.2K 60A@5T,4.2K 2120 @ 12T,4.2K
TBD@ 3T, 15K
Wire dia. (insulated) mm 0.54 + (0.04~0.10) 0.55 + 0.06 0.6+ 2x0.075
Insulation material Enamel + (Glass-Fiber) Glass braid Glass braid
Heat Treatment required <200C ~ 600 C ~650Cx 240 h
Relative cost 1 ~2 ~5

Availability

Contributed by Fermilab
(available also at F.E.)

Purchasing required
(Hitachi)

Purchasing required
(F.E.: Furukawa Electric)



Subjects to be investigated and examined.

DK electron‘s heat absorption:
— Further quantitative evaluation and simulations.

+ Magnet design and development: o &
— Conductor material, and magnetic characteristics, o0
— Electromagnetic design,

— Heat balance for electron absorption and conduction
cooling .

— Overall system design optimization, including quench
safety, with the simplest and most reliable system



An R&D Program Proposed

in a time scale of ~ 2 years

Model magnet development:
*  Features:
— Iron-dominated, superferric, combined (G & B) function.

—  Splittable structure for the assembly independent from SRF cavity string
assembly,

— Conduction-cooling by using a cryo-cooler,

— Heat deposition to be simulated by using heaters embedded in the SC Calil,
and

— Quench protection and safety to be demonstrated

. Dimensions:
— Scales: 1/1 X-section, and % ~ %2 length, (0.25~0.5m)

* Ape=0.09m
*  Lyoke 20.25~0.5m, L fieig = 20.2~0.5 m

*  Magnetic field:
— Magnetic field: HE type, Gq =38 T/m, Bp=0.1 T
* Q, G-integral=8~19T (=38T/m)
+ D, B-integral =0.02~0.05 T*'m (=0.1T)

t' Field clamps

Magnet poles
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Fig 3. One half of magnet package view

Subjects to be demonstrated and understood:

J Magnet structure splittable,

. Conduction-cooling,

. SC conductor (NbTi or MgB,) optimization,

. Coil fabrication,

. Physical tolerance and magnetic field quality,

J Excitation and pulsive operation with Temp. margin

J Alignment stability during excitations.

. Leakage field control along beam axis,

J Heat absorption with simulating dark-current electron bombardment.
. Quench characteristics, protection, safety and recovery performance,
. Radiation hardness against FE electron bombardment.

Process:

+ Testcaoll:
— Two Race-track coils (each using NbTi and MgBz SC)
—  Conduction cooling and excitation with simulating heat-absorption

*  Model magnet:
— Quadrupole configuration w/ iron-yoke/poles, splittable
—  Conduction-cooling with optimization for cooling time,
— Field quality, stability, and sustainability with absorbing heat.
— Quench protection and safety evaluation,
— Recovery time to ordinal operation, in case of quench



Study and R&D Plans anticipated in global cooperation
./ JFvaz-2z

Simul. & Design Study
Heat deposit evaluation -.
Quench and safety study -.
Magnet Design .-

R&D Programs
Test Coil (0.2~0.5m)

S. Conductor fabrication
Coil fabrication and test o <:>>
Cooling, excitation, evaluation E :

Model Magnet (0.2~0.5 m)

~50cm

S. Conductor fabrication :
s'e

Coil fabrication - .

\’]T‘ 0
Model mag. assembly o0
Model mag. test & evaluation

Prototype Magnet (1 m) To be
extended

A. Yamamoto, '20-07-30



Summary

* The superconducting magnet for SRF Linac needs to be well
harmonized/synchronized with the SRF cavity advances in
particular in high-gradient frontier.

* The dark current needs to be safely absorbed in the
superconducting magnets with minimizing risks for quenching.

* An R&D effort for the magnet sustainable against the energy

absorption is planned in cooperation KEK, Fermlab, and any global
partners
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Key Technologies at ILC

e- Source

pre-accelerator

Damping Ring

e+ Main Liinac

at ML

compressor

A. Yamamoto, '20-07-30

e+ Source

e- Main Linac

Interaction point
Detectors

Nano-Beam Technology
at DR and BDS

.
Ej 11

main linaca
I

collimation

Linear RF Power distibution ' ="
with circulator & stub or EH tuner for every
cavity input

Parameters

Beam Energy
Beam Rep. rate
Pulse duration
Beam size at IR

ML-SRF, <E> gradient
Qo

# SRF cavity (9-cell)

# Cryo-M-a. w/o Q-mag
# Cryo-M-b, w Q-mag
# RF, Klystron

125 GeV
5Hz
0.73 ms
7.7 nm

31.5 (35) MV/m (+/-20%)
>1E10 (1.6E10)

~8,000 x 1.1
~630
~315
~ 240

18



IL-ML SCQ Design Extend-ability to ILC-TeV
(500 GeV/c / beam)
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Lattice in ML (5 - 250 GeV per linac)
* 1Quad/3CM (9-8-9)  (FDOFDO)

* Quad Spacing ~38m

® Curved linac

* Phase advance x/y = 75°/60°

* matching sections require ~10%
higher quad strength
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Energy upgrade scenario
(250 = 500 GeV per linac)
* Same layout 1Q / 3CM (FFODDO)
* Same Quad strength

* Half-phase advance: x/y = 37°/30°
for upgraded HE linac

* Stronger correctors ~10% (for the
same Vertical curvature)

N.Solyak “ML Magnet specs” 6
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SCQ for ILC250 needs to adapt ILC-TeV
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V. Kashikhin, Feb. 22, 2018

Quadrupole and Dipole Fields combined,
As a reference from the LCLS-Il SRF Linac SCQ/D experience

Magnet Package Schematic

ol Ay
T\
Collt Flone » There are 4 racetrack coil blocks in the
. ' magnet.

ol 1 + Each block has:
- - quadrupole coil;
- vertical dipole coil;
- horizontal dipole coil;
- heater coil.
» All coils connected in series forming
quadrupole or dipole field configuration.
» To monitor the magnet performance each
‘ coil end has voltage tap connected to the
/ cryomodule instrumentation electronics.
» 3 superconducting coils pairs of current
4 » leads ( 6 total ) go to the cryomodule top
Tt flange.
A .~ + Because the magnet splitted vertically
ceelts Bl L’iﬁ" Col 4 there are 6 superconducting coil splices

@lnl rupole voltage ta - black
i s | between two halves of the magnet
Heoter = red” mounted on the Al magnet bottom plate.

LCLS-Il Director’s Review, February 17-10 2015 8

A. Yamamoto, '20-07-30 20



Conduction-cooled SCM installation
into KEK-STF2 beam line

A. Yamamoto, '20-07-30
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K-STF {BPM/Beam-Pipe + SCQ}

// E & ,4. o & :‘b
g - o ; 4 o,
«f - o "
.

Installation to

AN

2bssl fnenuo

Features:
* {SRF-cavity + BPM + Beam pipe} assembly carried out after SRF cavity clean-room work completed.
* SC magnet yoke/pole directly aligned with BPM --> important !

* Magnet yoke, coils, and current leads (w/ HTS leads) conductively cooled by using pure-Al strips.
22
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Electron Flux(em?2)

By Y. Morikawa, 200721

Dark Current absorption Simulation in ILC-ML SCQ (2)
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This simulation result:
Electron absorption: ~4 W
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By Y. Morikawa, 200721

Dark Current absorption Simulation in ILC-ML SCQ (3)
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Splittable Quad
Conduction Cooled

Assembly
and Test




Conduction Cooling Test using CryoCooler
Aug.-Sept. 2012 o
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