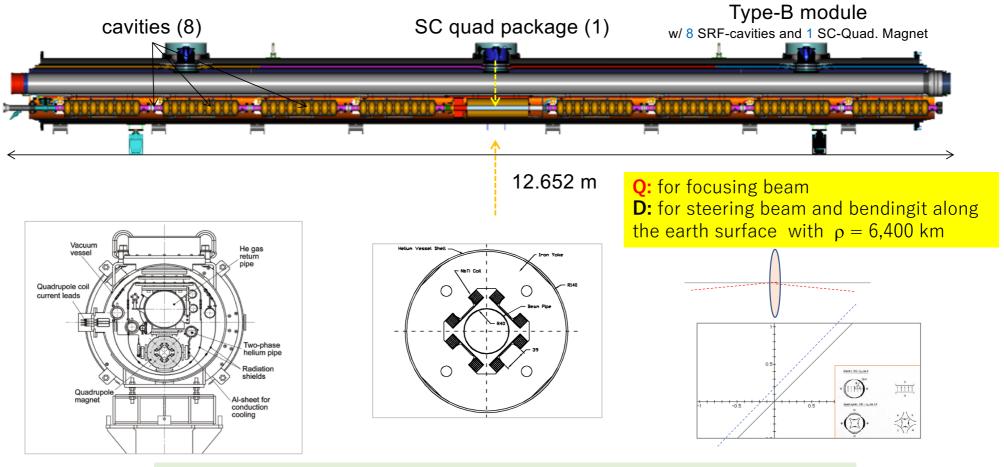

An R&D Proposal for Superconducting Magnets harmonized with High-Gradient SRF Cavity and Linac

Akira Yamamoto (KEK/CERN)

AWLC2020, Acc. SRF Session, October 22, 2020


1

Advances in L-band (~ 1GHz) SRF Cavity Gradient

A. Yamamoto, 190513bb

Superconducting Magnets for ILC ML

Q and D Combined functioning required for beam focusing and steering

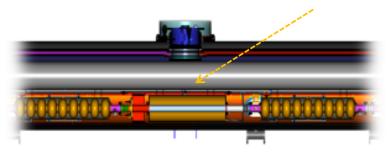
A. Yamamoto, '20-07-30

ILC-ML SCQ: Requirements and Features

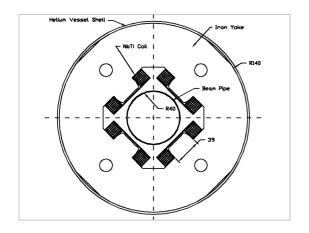
Parameter	Performance Requirements/ Specifications
Dimensions:	Beam-bore aperture: 78 mm SCQ Pole aperture: 90 mm
Mag. Field	Quad, G-integral: <mark>38 T</mark> Dipole, B-integral: 0.1 T
Harmonics:	Quad. @ r = 5 mm: ≤ 1E-3 Skew Q @ r = 5 mm, < 3E-4
Field stability	During beam-pulse (1ms): 2E-5 Over beam-pulse (>> 1 ms): 1E-3
Field change/feedback	Quad: 0.03 %/s to G-max, Dipole: 0.6%/s to B-max
Alignments:	Rel. to BPM: 0.3 mm, 0.3 mrad.
Low current for low Cryog. Load	Quad: ≤ 100 A Dipole: ≤ ~ 40 A
Cooling time: (to be studied)	Initial cooling: < 5 days, Recovery after quench: $< \sim 30$ min.

Features:

- Magnetic field strength:
 - Maximum at Beam-Energy = <u>250 GeV</u> because of optics,


Splittable Structure:

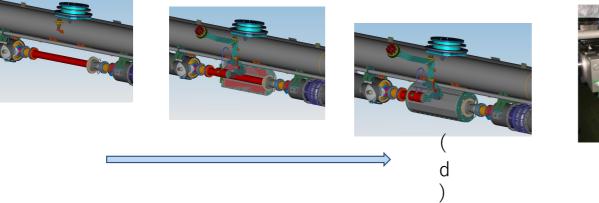
- for the magnet <u>assembly separated from SRF cavity</u> <u>string</u> assembly in clean room,
- Super-ferric (iron dominated) magnet preferred.


Conduction Cooling

- No LHe vessel w/ reliable alignment to BPM,
- Thermal anchoring to two-phase He-pipe,
- Alignment with Beam Position Monitor
 - Alignment and Field stability is very important
- Pulsive Operation in small faction
 - For beam orbit correction and feedback
- Sustainability against Dark Current (DC):
 - Heat absorption and radiation hardness against DC

SC Magnet Design for ILC Main Linac in cooperation of Fermilab and KEK

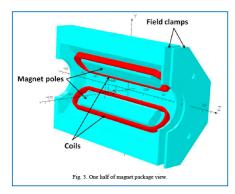
<u>SC Magnet</u> (Q+D)

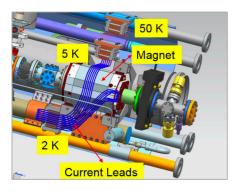


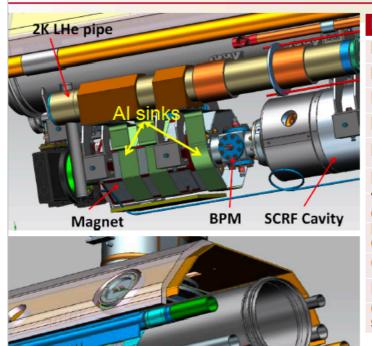
Parameters	Unit	Type - H.E. (25~ <mark>250 GeV</mark>)
Dimensions: Physical Length Magnetic Length Iron-Pole Radius	m m m	1.00 0.95 0.045
Quadrupole field: Field Gradient (G) <u>G-Integral</u> (required) B _G at pole	T/m T T	40 <mark>38</mark> ~ 1.8
Dipole field: B _D <u>B-Integral (</u> required)*	T T∙m	0.105 0.10
B-max at Pole in Coil	T T	~ 1.9 < 3

SC magnet design to be well harmonized with high-gradient SRF cavity "clean" fabrication

- Split-able quadrupole demanded for the assembly to be separated from SRF cavity string "clean" assembly.
- Conduction cooling enables the magnet cryogen-free and eliminates the LHe vessel.



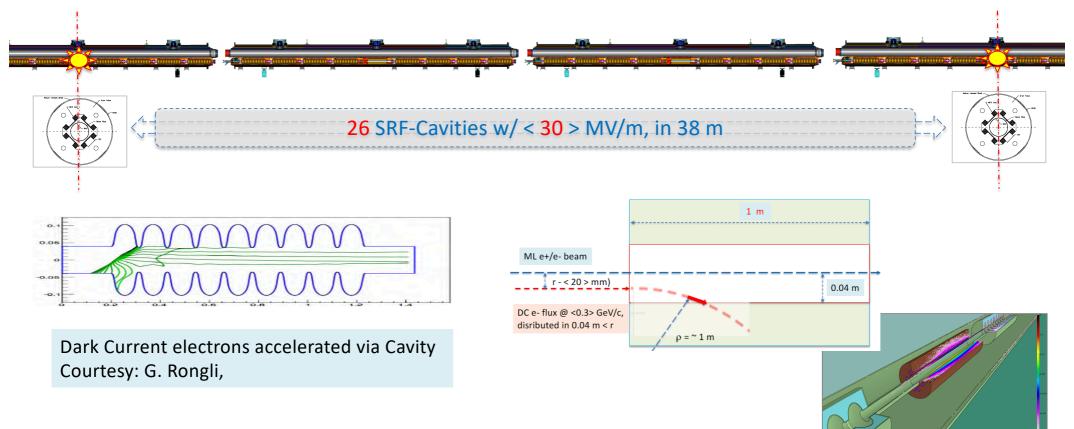




Concept successfuly demonstrated

LCLS-II Magnet in the Cryomodule

		_ <u>SI A</u> r
Parameter	Unit	Value
Magnet physical length	mm	340
Magnet width/height	mm	322/220
Pole tip radius	mm	45
Peak operating current	Α	≤ 50
Number of quadrupole coils		4
Number of dipole coils		8
Type of superconducting coils		Racetracks
NbTi superconductor diameter	mm	0.5
Quadrupole inductance	mH	82
Liquid helium temperature	Κ	2.2
Quantity required (with spares)		36


Courtesy: V. Kashikhin

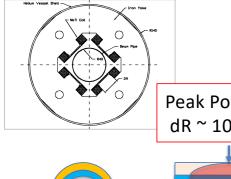
The magnet package for 2 prototypes will be installed at the end of the cryomodule. Magnet conductivly coolled through pure Al thermal sinks.

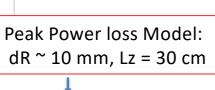
LCLS-II Director's Review, February 17-19 2015

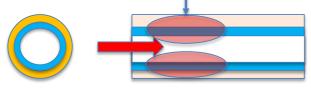
An Issue in particular HG SRF Linac in future:

Dark-Current Electrons generated in SRF Cavities accelerated and transported into the next SC magnets

The Superconducting Magnets to be sustainable against Dark-Current from High-Gradient SRF Cavities


- Dark Current needs to be inevitably assumed in high-gradient frontier for SRF cavities,
- The dark-current electrons are accelerated along the down-stream SRF cavity strings, and reach SC magnets, down-stream,
- Most of the electrons are deflected and the energy is absorbed in the superconducting (SC) magnet, resulting heating.
- The SC magnet needs to be sustainable and harmonized with advances in high-gradient frontier of the SRF cavity technology.


Heat Absorption in the ILC-ML SCM


Dark Current Heating in Simulation

By A. Sukhanov, N. Solyak et al., LINAC2016,

Beam Energy, GeV	5	10	15	125	250
Quad, W	0.07	0.15	0.22	1.35	1.7
Cavity, W	0.36	0.36	0.45	0.45	0.2
RF Unit, W	4.1	3.5	3.2	2.7	2.6

A. Yamamoto, '20-07-30

Assumption of Power/Energy Deposition into SCM (Q/D)

- Dark current / cavity: ≤ 50 nA
- Power deposition : 1.35 W @ 125 GeV ---> < 5 W @ 500 GeV</p>
- E = 1 Joule / 1 ms (with an interval time of 200 ms, or 5Hz)

Temperature rise (ΔT) due to E. Deposition, if no-cooling

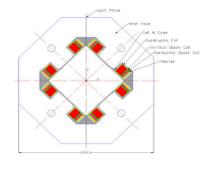
- $\Delta T = (E/M) / c_{-Cu}$ (assuming Cu@ 5 K)
 - = 1.3 K / pulse (1 ms),
 - \leq 6.5 K / sec,

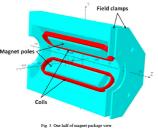
Magnet sustainability in ~ 1 sec

- MgB₂ / Nb3Sn (Tc ~ 15 K, at 3 T, I/Ic \leq 50 %)
- NbTi (Tc ~ 8 K, at 3 T, I/Ic \leq 50 %) \rightarrow approaching to Tc

Candidates Superconductors to be evaluated

Item	Unit	NbTi	MgB ₂	Nb ₃ Sn
Critical Temp. @ 0 T and 0A	К	9.2~9.5 K ~ 8 K @ 3 T	39 K ~15 K @ 3 T	18.3 K (> ~ 15 K @ 3T)
Wire dia. (bare)	mm	0.5	0.55	0.6
# filaments		7242	10	13,338
Filament dia.	μm	3.7	< 100	2.4
Twisted pitch	mm	25	200	30
Cu: SC (ratio)		1.5~2 : 1	1.5~2 : 1 1 : 1.2	
RRR (Cu)		50 ~ 100	88 (RT/10 K), 40 (RT/-40K)	≥ 120
Critical Current	А	204 A @ 5 T, 4.2 K	60 A @ 5 T, 4.2K TBD @ 3 T, 15 K	≥ 120 @ 12 T, 4.2 K
Wire dia. (insulated)	mm	0.54 + (0.04~0.10)	0.55 + 0.06	0.6+ 2 x 0.075
Insulation material		Enamel + (Glass-Fiber)	Glass braid	Glass braid
Heat Treatment required		< 200 C	~ 600 C	≥ ~ 650 C x 240 h
Relative cost		1	~ 2	~5
Availability		Contributed by Fermilab (available also at F.E.)	Purchasing required (Hitachi)	Purchasing required (F.E.: Furukawa Electric)

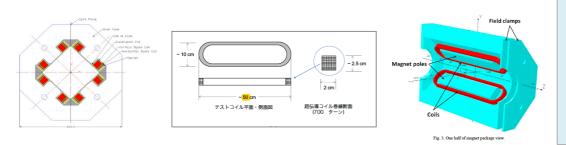

Subjects to be investigated and examined.


• DK electron's heat absorption:

- Further quantitative evaluation and simulations.

Magnet design and development:

- Conductor material, and magnetic characteristics,
- Electromagnetic design,
- Heat balance for electron absorption and conduction cooling .
- Overall system design optimization, including quench safety, with the simplest and most reliable system



An R&D Program Proposed

in a time scale of ~ 2 years

Model magnet development:

- Features:
 - Iron-dominated, superferric, combined (G & B) function.
 - Splittable structure for the assembly independent from SRF cavity string assembly,
 - Conduction-cooling by using a cryo-cooler,
 - Heat deposition to be simulated by using heaters embedded in the SC Coil, and
 - Quench protection and safety to be demonstrated
- Dimensions:
 - Scales: 1/1 X-section, and 1/4 ~ 1/2 length, (0.25~0.5m)
 - A_{pole} = 0.09 m
 - L_{yoke} ≥ 0.25~0.5 m, L_{field} = ≥ 0.2~0.5 m
- Magnetic field:
 - Magnetic field: HE type, $G_Q \ge 38 \text{ T/m}$, $B_D \ge 0.1 \text{ T}$
 - Q, G-integral = 8~19 T (≥ 38 T/m)
 - D, B-integral = $0.02 \sim 0.05 \text{ T} \cdot \text{m} \ (\ge 0.1 \text{ T})$

A. Yamamoto, '20-07-30

Subjects to be demonstrated and understood:

- Magnet structure splittable,
- Conduction-cooling,
- SC conductor (NbTi or MgB₂) optimization,
- Coil fabrication,
- Physical tolerance and magnetic field quality,
- Excitation and pulsive operation with Temp. margin
- Alignment stability during excitations.
- Leakage field control along beam axis,
- Heat absorption with simulating dark-current electron bombardment.
- Quench characteristics, protection, safety and recovery performance,
- Radiation hardness against FE electron bombardment.

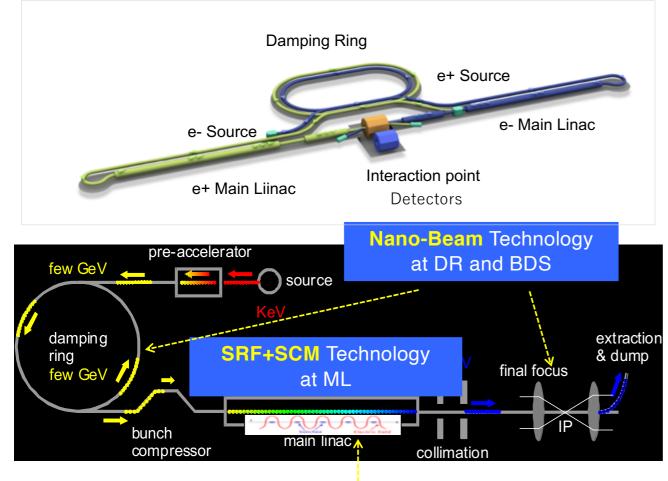
Process:

- Test coil:
 - Two Race-track coils (each using NbTi and MgB₂ SC)
 - Conduction cooling and excitation with simulating heat-absorption
- Model magnet:
 - Quadrupole configuration w/ iron-yoke/poles, splittable
 - Conduction-cooling with optimization for cooling time,
 - Field quality, stability, and sustainability with absorbing heat.
 - Quench protection and safety evaluation,
 - Recovery time to ordinal operation, in case of quench

Study and R&D Plans anticipated in global cooperation

	JFY2020 ~ 2023	
Simul. & Design Study		
Heat deposit evaluation		
Quench and safety study		
Magnet Design		
R&D Programs		
<u>Test Coil (</u> 0.2~0.5m)		
S. Conductor fabrication		
Coil fabrication and test		
Cooling, excitation, evaluation		
<u>Model Magnet (</u> 0.2~0.5 m)	k ~ 50 km → 1	
S. Conductor fabrication		
Coil fabrication		
Model mag. assembly		
Model mag. test & evaluation		- 4.055
Prototype Magnet (1 m)	To be extended	

Summary

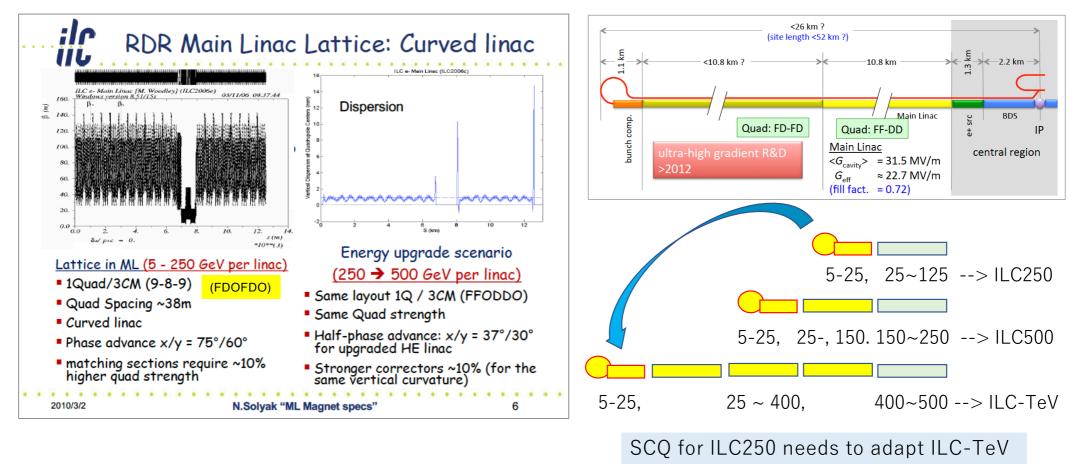

- The superconducting magnet for SRF Linac needs to be well harmonized/synchronized with the SRF cavity advances in particular in high-gradient frontier.
- The dark current needs to be safely absorbed in the superconducting magnets with minimizing risks for quenching.
- An R&D effort for the magnet sustainable against the energy absorption is planned in cooperation KEK, Fermlab, and any global partners

Acknowledgements

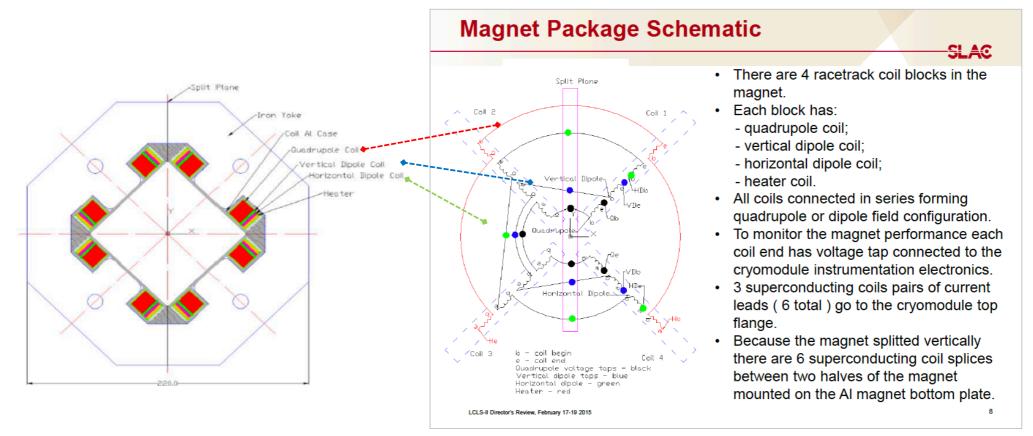
 Many thanks V. Kashikhin, N. Solyak, (Fermilab), and Y. Morikawa, K. Umemori, N. Ohuchi, Y. Arimoto, and S. Michizono (KEK), and others for their various discussions and kind cooperation for this study and R&D plan.

Backup

Key Technologies at ILC

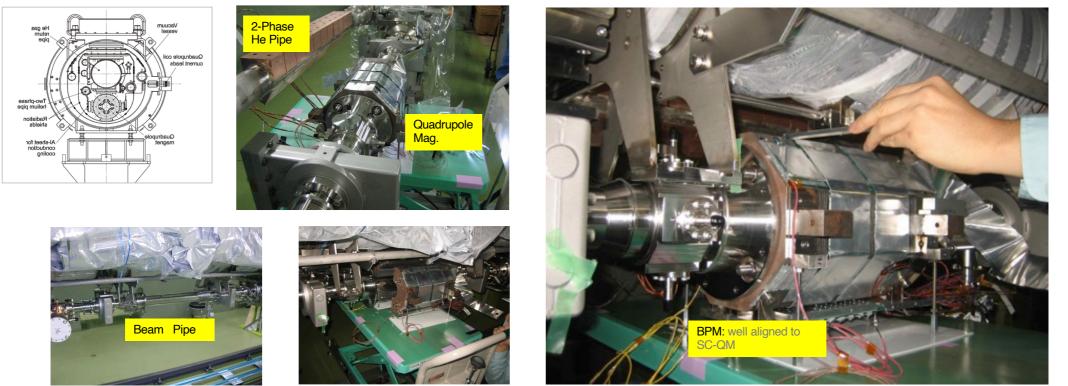


	cryomodule connection	on		cr yomodu i	e connection			
,							<u></u>	
							• -••// <mark>/</mark>	Ţ
^{3MW ⊔ne} with circulator & stub or EH tuner for every cavity input				3MW Line	splitter	circulator stub tuner	coupler be pump pe crycenode pump	can line unp Me


Parameters	Value
Beam Energy	125 GeV
Beam Rep. rate	5 Hz
Pulse duration	0.73 ms
Beam size at IR	7.7 nm
ML-SRF, <e> gradient Q_0</e>	31.5 (35) MV/m (+/-20%) ≥ 1E10 (1.6E10)
# SRF cavity (9-cell)	~ 8,000 x 1.1
# Cryo-M-a. w/o Q-mag	~ 630
# Cryo-M-b, w Q-mag	~ 315
# RF, Klystron	~ 240

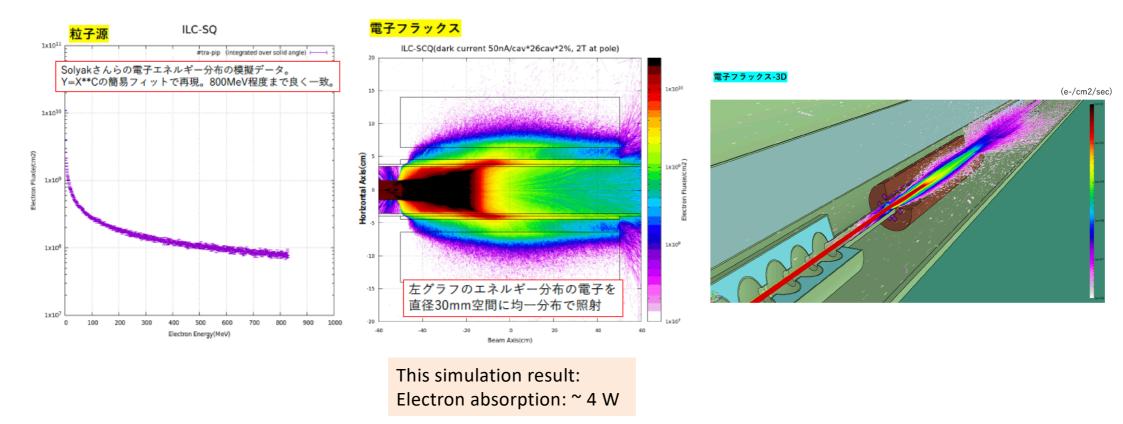
IL-ML SCQ Design Extend-ability to ILC-TeV (500 GeV/c / beam)

Quadrupole and Dipole Fields combined,


As a reference from the LCLS-II SRF Linac SCQ/D experience

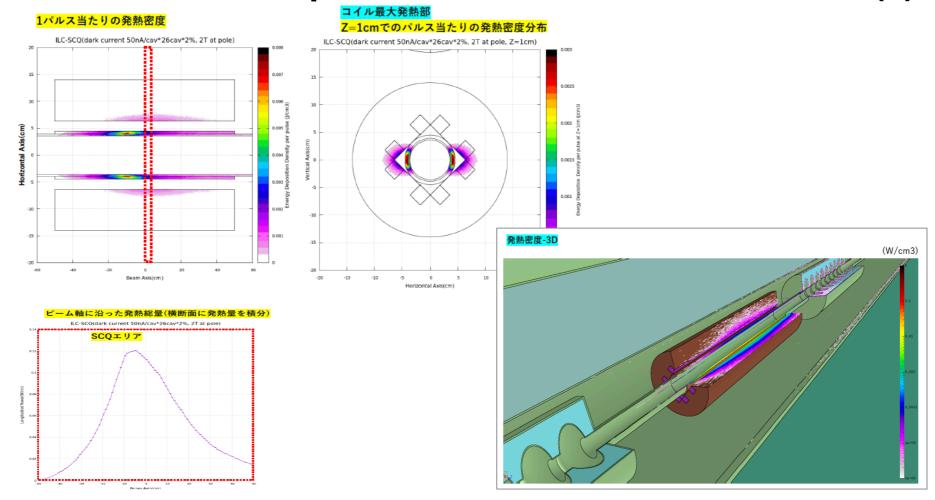
Conduction-cooled SCM installation into KEK-STF2 beam line

Installation to KEK-STF {BPM/Beam-Pipe + SCQ}

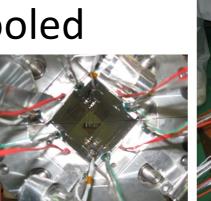


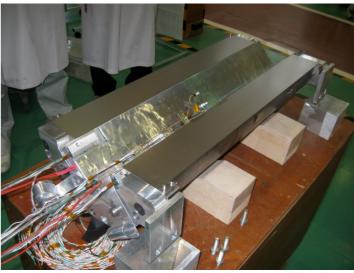
Features:

- {SRF-cavity + BPM + Beam pipe} assembly carried out after SRF cavity clean-room work completed.
- SC magnet yoke/pole directly aligned with BPM --> important !
- Magnet yoke, coils, and current leads (w/ HTS leads) conductively cooled by using pure-Al strips.

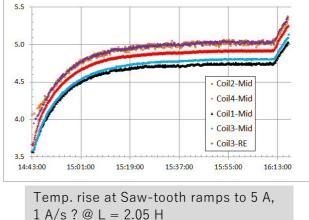

By Y. Morikawa, 200721

Dark Current absorption Simulation in ILC-ML SCQ (2)


By Y. Morikawa, 200721


Dark Current absorption Simulation in ILC-ML SCQ (3)

Splittable Quad Conduction Cooled Assembly and Test



Conduction Cooling Test using CryoCooler

Aug.-Sept. 2012

14.0 30 A Shut Off -Coil2-Mic Coil4-Mid 12.0 Coil Tempeature (K) 10.0 Critical Temp > 8 K 8.0 0 -> 30 A by 0.4 A/s 6.0 Max. Temp: < 5 K 4.0 14:20:00 14:26:40 14:30:00 14:23:20 Time 0 to 30 A, 0.4 A/s

A. Yamamoto, '20-07-30