Status on e⁺e⁻ -> γZ process Jet Energy Calibration

Takahiro Mizuno

Recent Progress

Jet energy calibration using 250 GeV DBD sample

Consideration of cut to exclude the wrong photon choice events

Establishment of the new jet energy reconstruction method "Method 4A" & "Method 4B"

Consideration of cut to exclude the wrong photon choice events

Full simulation to reconstruct the jet energies -> It turned out that signal photon selection is failed in (38122 events) / 311675.

We need to consider the cut to exclude the wrong photon choice events Not noly "MCcut" but also "Realistic cut"

1. Previous Result

Mz vs. Visible Energy (=Ej1+Ej2+Eγ) mz:(j1EAnl+j2EAnl+photonEAnl)

1. Previous Result

"Mz<125 && Visible Energy>200"

θ difference (rad)

photonthetaAnl-photonthetaMC {mz<125 && j1EAnl+j2EAnl+photonEAnl>200}

Mz vs. Visible Energy (=Ej1+Ej2+Eγ)

It seems useless to add lower bound cut "Mz>aa" in addition to cut "Mz<125 && Visible Energy>200".

Mz for "Visible Energy>200 && $cos\theta(Jet1,2 \cdot \gamma) < 0.95$ " events " $|\theta\gamma PFO-\theta\gamma MC| < 0.01$ " and " $|\theta\gamma PFO-\theta\gamma MC| < 0.01$ " events

Cut "Mz<125 & Visible Energy>200": 242913/246746 are correct. Cut "Mz<125 & Visible Energy>200 & Cosθ(Jet1 • γ)<0.95 & Cosθ(Jet2 • γ)<0.95": 240512/241682 are correct.

	MC Level Cut	Realistic Cut
In all case	"Method 3 has answer" " θγPFO-θγMC <0.01"	<pre>"Method 3 has answer" "Mz<125 && Visible Energy>200" "cosθ(Jet1 • γ)<0.95" "cosθ(Jet2 • γ)<0.95"</pre>
To narrow the phase space	"θ _{J1} MC<…" "E _{J1} MC<…" …	"θ _{J1} Measured<…" "E _{J1} Measured<…" …

Establishment of the new jet energy reconstruction method "Method 4A" & "Method 4B"

Method 3: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \phi_{J1}, \phi_{J2}, \phi_{\gamma}, m_{J1}, m_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Had to solve two quartic equations and choose the best answer! -> Are there any easier expression?

2

Establishment of the new jet energy reconstruction method "Method 4A" & "Method 4B"

Jet mass "m" can be expressed as "P/ $\gamma\beta$ " (P: momentum of the jet)

-> Irrational equation ① is reduced to be a linear equation!

$$\sqrt{P_{J1}^2 + m_{J1}^2} + \sqrt{P_{J2}^2 + m_{J2}^2} + P_{\gamma} + |P_{ISR}| = E_{CM}$$

$$|P_{J1}| \sqrt{1 + \frac{1}{(\gamma\beta)_{J1}^2}} + |P_{J2}| \sqrt{1 + \frac{1}{(\gamma\beta)_{J2}^2}} + P_{\gamma} + |P_{ISR}| = E_{CM}$$

-> Use measured $\gamma\beta$ as inputs

Method 4: Consider ISR and solve the full equation Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, \gamma \beta_{J1}, \gamma \beta_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

Method 4A: Represent the equation with P_{ISR} Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, \gamma \beta_{J1}, \gamma \beta_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

$$\begin{aligned} |P_{J1}| \sqrt{1 + \frac{1}{(\gamma\beta)_{J1}^2}} + |P_{J2}| \sqrt{1 + \frac{1}{(\gamma\beta)_{J2}^2}} + P_{\gamma} + |P_{ISR}| &= E_{CM} \\ sin\theta_{J1}cos\phi_{J1} & sin\theta_{J2}cos\phi_{J2} & sin\theta_{\gamma}cos\phi_{\gamma} \\ sin\theta_{J1}sin\phi_{J1} & sin\theta_{J2}sin\phi_{J2} & sin\theta_{\gamma}sin\phi_{\gamma} \\ cos\theta_{J1} & cos\theta_{J2} & cos\theta_{\gamma} \\ \end{aligned} \\ \begin{pmatrix} P_{J1} \\ P_{J2} \\ P_{\gamma} \\ \end{pmatrix} &= \begin{pmatrix} (E_{CM} - |P_{ISR}|)sin\alpha \\ 0 \\ \pm |P_{ISR}|cos\alpha \\ \end{pmatrix} \end{aligned}$$

Choose the solution with solved P_{γ} closest to the measured P_{γ}

Method 4B: Represent the equation with P_{γ} Using $(\theta_{J1}, \theta_{J2}, \theta_{\gamma}, \varphi_{J1}, \varphi_{J2}, \varphi_{\gamma}, \gamma \beta_{J1}, \gamma \beta_{J2})$ -> Determine $(P_{J1}, P_{J2}, P_{\gamma}, P_{ISR})$

$$\begin{aligned} |P_{J1}| \sqrt{1 + \frac{1}{(\gamma\beta)_{J1}^2}} + |P_{J2}| \sqrt{1 + \frac{1}{(\gamma\beta)_{J2}^2}} + P_{\gamma} + |P_{ISR}| &= E_{CM} \\ \begin{pmatrix} \sin\theta_{J1}\cos\phi_{J1} & \sin\theta_{J2}\cos\phi_{J2} & \sin\alpha\\ \sin\theta_{J1}\sin\phi_{J1} & \sin\theta_{J2}\sin\phi_{J2} & 0\\ \cos\theta_{J1} & \cos\theta_{J2} & \pm\cos\alpha \end{pmatrix} \begin{pmatrix} P_{J1}\\ P_{J2}\\ P_{ISR} \end{pmatrix} &= \begin{pmatrix} E_{CM}\sin\alpha - \sin\theta_{\gamma}\cos\phi_{\gamma}P_{\gamma}\\ -\sin\theta_{\gamma}\sin\phi_{\gamma}P_{\gamma}\\ -\cos\theta_{\gamma}P_{\gamma} \end{pmatrix} \end{aligned}$$

Choose the solution with solved P_{γ} closest to the measured P_{γ}

Method Comparison Result

Jet 1 Jet 2 $E_{JRec} - E_{JTrue}$ $E_{JRec} - E_{JTrue}$ E_{JTrue} E_{JTrue} 25000 PFO PFO Method 1 Method [·] Method 2 Method 2' Aethod 2 Aethod 2' 8000 ethod 3 ethod 3 20000 Method 4A Method 4B Method 4A Method 4B 6000 15000 4000 10000 2000 5000 0 -0.2 -0.2 -0.1 0.2 0.1 0.2 -0.1 0.1 \mathbf{O}

Method 4A and 4B are exactly same (because equations are very simple and only sign ambiguity exists). Method 3 is the best judging from peak height and symmetry.

Conclusion

New realistic cut "Mz<125 && Visible Energy>200 && $\cos\theta(\text{Jet1} \cdot \gamma) < 0.95$ && $\cos\theta(\text{Jet2} \cdot \gamma) < 0.95$ " seems to be better than previous one. In this cut, 99.5% of events are correct photon selection case while 98.4% for the previous cut.

Method 4A and 4B using measured $\gamma\beta$ as inputs are established so as to avoid the irrational equation in Method 3. However, Method 3 is the best judging from peak height and symmetry.

I would like to get a final conclusion for the JES calibration before the JPS meeting.

Thank you for your attention!

15