$H \rightarrow \tau^+ \tau^-$ CP Violation Analysis for SiD

L. Braun J. Brau

University of Oregon

September 23, 2020

L. Braun J. Brau $H \rightarrow \tau \tau$ CP Violation for SiD

1/6

回 と く ヨ と く ヨ と …

Tau-Based Analysis of Higgs CP Violation - Methodology

- General methodology: extract **polarimeter vector** from analyzing tau decay; find **azimuthal angle** between τ^+ and τ^- polarimeter vectors
- Polarimeter vectors vary with tau decay; $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau}$ (below) and $\tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$ are the simplest to analyze, but using higher-multiplicity decays would allow for more events to be used

2/6

э

Input Distributions for Higher-Multiplicity Decay Tagging

- \bullet Group all charged particles closest to each seed inside and outside of 10° cone around seed
- Pair all photons to reconstruct **neutral pions** (requiring $0.12 < m_{\gamma\gamma} < 0.15$); assign to closest seed
- Tau-vs-background NN: 32 inputs
 - Z invariant mass, recoil mass, total event energy, invariant mass of remaining particles after Z daughters removed, Z invariant mass (total 5 inputs)
 - Angle between charged seeds
 - Energy and multiplicity of charged particles inside and outside of 10° cone for each τ (total 8 inputs)
 - Energy and multiplicity of π^0 and unpaired **photons** for each τ (total 8 inputs)
 - Total visible invariant mass of charged particles within 10° cone and all assigned π^{0} and photons, as well as for just the charged particles, for each τ (total 4 inputs)
 - For 3-charged-prong decays, invariant mass of product pair closest to rho mass, neutral pion multiplicity, and unpaired photon multiplicity, for each tau (6 inputs)

• Tau decay separation NN: 14 inputs

- Energy and multiplicity of charged particles inside and outside of 10° cone (4 inputs)
- Energy and multiplicity of π^0 and unpaired photons (total 4 inputs)
- Total visible invariant mass of charged particles within 10° cone and all assigned π^{0} and photons, as well as for just the charged particles (2 inputs)
- For 3-charged-prong decays, invariant mass of product pair closest to rho mass, neutral pion multiplicity, and unpaired photon multiplicity (3 inputs)
- Seed is lepton (0) or hadron (1)?
- Preliminary testing using 1 hidden layer for each NN

э.

Higher-Multiplicity Decay Tagging with Delphes

- Now using signal and 4f background produced with Delphes fast simulation
- Strong tagging performance of most usable tau decays, though $\pi^{\pm}\pi^{0}$ and $\pi^{\pm}2\pi^{0}$ are still sometimes confused due to π^{0} reconstruction imperfections
- Note: Percent efficiencies are calculated after minimum multiplicity cuts, which remove 13.82% of signal events and 99.88% of 4f background events

Tau tagging efficiency								
NN tag	Truth event type							
	au	bkg						
τ	99.99	2.87						
bkg	0.01	97.13						

Migration among τ decay paths (%)

NN tag	Truth decay path							
	π^{\pm}	$\pi^{\pm}\pi^{0}$	ℓ	$\pi^{\pm}2\pi^{0}$	$\pi^{\mp}2\pi^{\pm}$	other	bkg	
π^{\pm}	94.80	2.75	0.06	0.22	2.08	4.02	4.27	
$\pi^{\pm}\pi^{0}$	3.38	92.88	0.12	12.65	2.31	7.07	13.03	
l	0.92	0.83	99.02	0.58	2.48	6.46	44.44	
$\pi^{\pm}2\pi^{0}$	0.02	2.05	0.01	82.71	0.15	8.83	4.70	
$\pi^{\mp}2\pi^{\pm}$	0.42	0.47	0.25	0.32	85.49	10.42	8.76	
other	0.47	1.03	0.53	3.53	7.48	63.20	24.79	

Signal vs 4f Background

Post-Tagging Multiplicity Analysis

- A key next step is to use tagged taus to perform CP violation analysis; this requires **post-tagging analysis of tau decay products** identified by tagging algorithm
- Preliminary analysis of charged and neutral particle multiplicities suggests that charged decay products are identified efficiently, but photons may decay to e^+e^- , and extra low-momentum particles may end up in tau cone; this is expected, but does require more thorough post-tagging algorithms

- Implement post-tagging CP violation analysis: reconstruct polarimeter vectors for each decay path, analyzing post-tagging multiplicity distributions
- Full SiD reconstruction: will allow for more accurate algorithm performance evaluation and detector studies
- Full tau reconstruction: once have basic post-tagging polarimeter reconstruction, can do full tau reconstruction to improve performance

= nar