Hadron production in photon-photon processes and BSM signatures with small mass differences update

ILD Software and Analysis meeting

Swathi Sasikumar Hamburg, 9 Sept. 2020

Introduction

Naturalness requires light higgsinos at electroweak scale

•
$$m_Z^2 = 2 \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - 2\mu^2$$

 Light higgsinos studied for two benchmark scenarios by Hale Sert -<u>DESY-THESIS-2016-001</u> (HS-analysis)

- $\Delta M(\tilde{X}_1^{\pm}, \tilde{X}_1^0) =$ 770 MeV => dM770
- $\Delta M(\tilde{X}_1^{\pm}, \tilde{X}_1^0) = 1600 \text{ MeV} => \text{dM1600}$
- ← Studied without the inclusion of $\gamma\gamma \rightarrow \text{low } p_T$ hadron overlay and simulated using SGV fast simulation perfect particle identification assumed

Production process and decay modes

- + The charginos are produced as $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$
- The exclusive decay mode: $\widetilde{\chi}_1^+ \widetilde{\chi}_1^- \to 2 \widetilde{\chi}_1^0 \pi^+ (\pi^+ \pi^0) \mu \nu_\mu (e \nu_e)$
 - semi-leptonic final state (30.5%, 35%)
 ⇒ to suppress neutralinos

Pic Courtesy: U. Einhaus

Signature of Light higgsinos

- Small mass splittings \Rightarrow a few soft visible particles
- Small transverse momentum (2 4 GeV)
- Invisible LSPs \Rightarrow a large missing energy

Standard Model background

• The $\gamma\gamma \rightarrow 2f$ background has same signature as the signal

Standard Model background

- The $\gamma\gamma\to 2f\,$ background has same signature as the signal

• A hard ISR photon is required to suppress this type background

- In the final state: $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$
- A few soft visible particles
- A large missing energy ($2\tilde{\chi}_1^0$)
- A hard ISR photon

Study of $\gamma\gamma$ overlay

- In this study, the two higgsino benchmarks studied with inclusion of γγ → low p_T hadron overlay
- Detailed study on γγ modeling performed and samples taken from the improved generator version to overlay
- Details about the generator study found in ILD meeting talk <u>here</u>
- Signal and $\gamma\gamma \rightarrow \text{low } p_T$ hadron vertices are displaced
- Often only single tracks => no classic vertexing possible

Track grouping Algorithm

- A track grouping algorithm developed to group tracks based on their z₀ value
- Aiming to separate signal and overlay tracks => further away on z-axis due to displaced vertices
- Only 16-18 % of the groups have mixed tracks
- The algorithm efficiently separates the overlay and signal tracks
- The results from track grouping algorithm mentioned in LCWS 2018 talk
- The groups created by the algorithm used to select semi-leptonic candidates for the signal among the overlay tracks

Modifications in event selection cuts

Hale's event selection cuts

- Events with any BeamCal activity vetoed
- + All particles should be 20° away from the beam and should have E < 5 GeV

Modifications in current analysis

- Events with any BeamCal activity or with particles in BeamCal with energy > 150 GeV vetoed
- Events with semi-lep found: E_{SL}+E_{neu} < 5 GeV & E_{SL}+E_{othr} < 5 GeV and only semi-lep candidates should be 20° away
- + Events without semi-lep: for all particles E < 5 GeV & be 20° away
- Details of event selection cuts presented in ILD Sw-Ana talk <u>here</u>

Event selection

New selection cuts

- Any photon with E > 10 GeV & |cos theta| >0.993 qualifies for ISR particularly in tau events
- Angle between ISR candidate and nearest track be larger
- Invariant mass of the ISR candidate and nearest track < M_{τ} < 1.7 GeV
- Lepton from di-leptonic decay events along with pions from overlay mimic the semi-lep signatures
- Events with oppositely charged extra lepton to the selected candidate, vetoed

Comparison of survived events

Comparison of number of events survived after the selection cuts

- Events with $\gamma \gamma \rightarrow \text{low } p_T$ hadron overlay (Swathi)
- Events without $\gamma\gamma \rightarrow \text{low } p_T$ hadron overlay (HS-analysis)

	Swathi dM1600	HS-analysis dM1600	Swathi dM770	HS-analysis dM770
$ ilde{\chi}_1^+ ilde{\chi}_1^-$	2851	3813	2714	4600
$ ilde{\chi}^0_2 ilde{\chi}^0_1$	42	97	78	36
SM	3290	4016	5420	2199

- Presence of overlay makes removal of SM background challenging
- Harsher and new cuts introduced to remove SM background
- Lesser signal events survived wrt HS-analysis

Mass reconstruction of $\tilde{\chi}_1^{\pm}$

- $M_{\tilde{\chi}_1^\pm}$ are reconstructed using their recoil mass against the ISR photon

• Reduced CM energy: $s' = s - 2\sqrt{s}E_{\gamma}$

• In rest frame of charginos $\sqrt{s'|_{thres}} = 2 \cdot M_{\tilde{\chi}_1^\pm}$

Comparison with HS-analysis

- Region near end point decisive for mass reconstruction
- Large errors due to lack of statistics at the endpoint
- With the average of first three bins:
 - dM1600 \implies 40% worse signal, 30% less bkg
 - dM770 \Rightarrow 37% worse, twice more background

Uncertainty expectations

- Assuming similar background and ~half the signal wrt HS-analysis, the uncertainty in dM1600 expected ~40%
- Background is 30% less and signal more than half => uncertainty smaller than 40%

	Swathi dM1600	HS-analysis dM1600	Swathi dM770	HS-analysis dM770
$ ilde{\chi}_1^+ ilde{\chi}_1^-$	2851	3813	2714	4600
$ ilde{\chi}^0_2 ilde{\chi}^0_1$	42	97	78	36
SM	3290	4016	5420	2199

- The number of background and signal event numbers totally different than the HS-analysis for dM770
- Estimation on the uncertainty for this scenario need more inputs

Recoil mass

- Shape of recoil mass distribution different than HSanalysis
- Low recoil mass region less populated due to harsher cuts
- Due to lack of MC data, large weights applied on events => spiked around signal end point => large errors => higher uncertainty than expected from bin-tobin comparison
- No cuts found to reduce background in the high recoil mass region

Fitted recoil mass

Chargino masses using fitted values:

- dM1600 : $M_{\tilde{\chi}_1^{\pm}} = 164.9 \pm 2.7 \, {\rm GeV}$
- dM770: $M_{\tilde{\chi}_1^\pm} = 160.3 \pm 3.8~{\rm GeV}$
- Fitted values within 0.3 and 1.8 standard deviations from the input value
- Uncertainty higher than expected from bin-to-bin comparison
- Lack of MC statistics results in large errors => higher uncertainty

Precision determination of Polarized Cross Section

- Statistical precision of polarized cross section $\delta\sigma_{\rm pol}/\sigma_{\rm pol}$ is estimated based on efficiency and purity

$$\frac{\delta\sigma_{\text{meas}}}{\sigma_{\text{meas}}} = \frac{1}{\sqrt{\epsilon \cdot \pi \cdot \sigma_{\text{signal}} \cdot \int \mathcal{L} dt}} \qquad \qquad \sigma_{\text{meas}} = \sigma_{\text{pol}} \times BR(\tilde{\chi}_1^+ \tilde{\chi}_1^- \to \tilde{\chi}_1^0 \tilde{\chi}_1^0, \pi, \mu(e))$$

	Current Analysis	HS-analysis
dM1600	2.3%	1.9%
dM770	2.9%	1.6%

- Uncertainties on BR depends on the mass difference $\Delta M_{\tilde{\chi}_1^{\pm},\tilde{\chi}_1^0}$
- Uncertainties on cross sections obtained as expected from the bin-to-bin comparison

Conclusion

- Light higgsinos can be measured at ILC even in the presence of $\gamma\gamma\to \log \, {\rm p_T}$ hadron overlay
- The track grouping algorithm facilitates an effective separation of signal and overlay tracks
- Key observables like the chargino mass and uncertainties on polarized cross section can be measured
- Even with statistical uncertainties worsening due to presence of overlay to about 1-2%, the obtained results are highly precise

Outlook

- Analysis including e⁺e⁻ pair background
- Perfect particle id assumed since PID cheated from MC data method to separate low momentum pions and muons developed by Hale
- Reconstruction of mass difference $\Delta M_{\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0}$
- Further improvements: better tracking for low pT tracks, inclusion of TOF

Mass difference

