TCMB report

Shin MICHIZONO (KEK)

- IDT configuration
- *IDT-WG2* activity
- Pre-lab preparation
- AWLC

ICFA appoints members for the ILC International Development Team

10 September 2020 - International Committee for Future Accelerators

The international effort to realise the next major particle collider, the International Linear Collider (ILC), has a new team to lead the project. Today the International Committee for Future Accelerators (ICFA) announced the structure and the team members of the ILC International Development Team (ILC-IDT).

On 2 August, ICFA approved the formation of the ILC-IDT with a mandate to make preparations for the ILC Pre-Lab in Japan, as the first step of the preparation phase of the ILC project. ICFA appointed Tatsuya Nakada, a professor at École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, as the chair. Nakada is a former chair of the Linear Collider Board, a panel of ICFA that promoted the case for the construction of an electron-positron linear collider and its detectors as a world-wide collaborative project.

The Team is hosted by KEK and consists of the Executive Board (EB) and three Working Groups (WG1, WG2 and WG3). The EB comprises a Chair, three members representing the three regions contributing to the ILC effort (Americas, Asia-Pacific and Europe), and three ex-officio members (KEK liaison officer and Chairs of WG2 and WG3, whereas WG1 is chaired by the EB Chair).

The Team members are:

Tatsuya Nakada (EPFL), Chair-Executive Committee and Working Group 1

Steinar Stapnes (CERN), Regional Representative–Europe

Andy Lankford (University of California, Irvine), Regional Representative-Americas

Geoffrey Taylor (University of Melbourne), Regional Representative-Asia/Oceania

Shinichiro Michizono (KEK), Chair-Working Group 2

Hitoshi Murayama (University California Berkeley/ IPMU-University of Tokyo), Chair-Working Group 3

Yasuhiro Okada (KEK), KEK Liaison

https://www.interactions.org/press-release/icfa-appointsmembers-ilc-international-development-team

WG2 charges/members

• WG2 conducts the ILC accelerator and facility work. It is responsible for continuing the accelerator and facility work currently carried out under the LCC framework. The WG2 effort will be taken over by the ILC Pre-Lab when it will become operational. The members are appointed by the EB.

Dimitri Delikaris	CERN				
Hitoshi Hayano	KEK				
Masao Kuriki	U. Hiroshima				
Benno List	DESY				
Jenny List	DESY				
Thomas Markiewicz	SLAC				
Olivier Napoly	CEA				
Toshiyuki Okugi	KEK				
John Andrew Osborne	CERN				
Marc C. Ross	SLAC				

David L. Rubin	Cornell				
Tomoyuki Sanuki	U. Tohoku				
Nikolay Solyak	FANL				
Nobuhiro Terunuma	KEK				
David L. Rubin	Cornell				
Akira Yamamoto	KEK				
Kaoru Yokoya	KEK				
Sam Posen	FNAL				
Philip Burrows	U. Oxford				
Yasuchika Yamamoto	KEK				

New members

I hope the members will be approved at next EB (tomorrow).

IDT WG2 timeline

Example (towards Pre-lab)

- 2022 April: Pre-Lab starts
- 2021 Dec.: IDT ends
- 2021 Feb.: First draft of budget request (each region/lab.)
- 2020 Dec.: Draft of sharing remaining technical preparation/pre-lab preparation (each region/lab.)
- 2020 Oct.: AWLC
- 2020 Oct.: Information sharing about technical preparation
- 2020 Sep.: List of Pre-lab acc. activities/ budget/ schedule

Accelerator activities at ILC Pre-lab phase

Technical preparations /performance & cost R&D [shared across regions]

- SRF performance R&D
- Positron source final design and verification
- Nanobeams (ATF3 and related): Interaction region: beam focus, control and Damping ring: fast kicker, feedback
- Beam dump: system design, beam window, cooling water circulation
- Other technical developments considered performance critical

Final technical design and documentation [central project office in Japan with the help of regional project offices (satellites)]

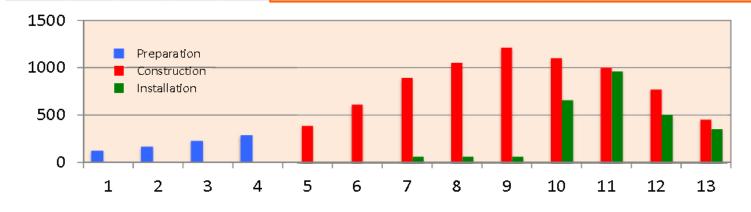
- Engineering design and documentation, WBS
- Cost confirmation/estimates, tender and purchase preparation, transport planning, mass-production planning and QA plans, schedule follow up and construction schedule preparation
- Site planning including environmental studies, CE, safety and infrastructure (see below for details)
- Review office
- Resource follow up and planning (including human resources)

Preparation and planning of deliverables [distributed across regions, liaising with the central project office and/or its satellites]

- Prototyping and qualification in local industries and laboratories, from SRF production lines to individual WBS items
- Local infrastructure development including preparation for the construction phase (including Hub.Lab)
- Financial follow up, planning and strategies for these activities

CE, local infrastructure and site [host country assisted by selected partners]

- Engineering design including cost confirmation/estimate
- Environmental impact assessment and land access
- Specification update of the underground areas including the experimental hall
- Specification update for the surface building for technical scientific and administrative needs


ILC construction human resources

Overview of Human Resources during the ILC Construction

Preparation stage (4 years) ~ Construction stage (9 years) ILC-500 → ILC-250

														unit: person
Stage		Prepa	ration	ı		Construction						Total		
	1	2	3	4	1	2	3	4	5	6	7	8	9	
Prep.	118	161	222	282										
TDR						TDR, ILC-500 Ann. average: ~ 1,100 persons								
Constr.					410	922	1208	1350	1589	1480	1374	1106	679	10,118
Install.							80	80	80	768	1140	683	522	3,353
Total					410	922	1288	1430	1669	2248	2514	1789	1201	13,471
ILC-250						ILC-250: Ann. average: ~ 830 persons								
Constr.					385	610	890	1050	1210	1100	1000	770	450	7,465
Install.							60	60	60	655	960	500	350	2,645
Total					385	610	950	1110	1270	1755	1960	1270	800	10,110

Accelerator preparation phase R&Ds

Area	Tasks KEK ILC action plan					
Accelerator Design	Design parameter optimization					
SCRF	Mass-production and quality control Superconducting material, cavity properties (electric field, resonance characteristics) Hub-lab functioning System performance stabilization (Stabilization of the performance and maintenance, including international transport of CM)					
Nanobeam	Minimizing the beam size and demonstrating stability Beam handling (DR, RTML, BDS, BD)*					
Accelerator elements - Positron source (e+) - Beam dump	e+: Undulator-driven (polarization) or an electron-driven system (backup), heat balance of the dump, cooling, safety					
CFS	Basic Plan by assuming a model site, engineering design, drawings, survey, assessment					
common technical support	Safety (radiation, high-pressure gas, etc.) Communication and network					
Administration	General affairs, finace, int. relations, public relations Administrative support for ILC pre-lab					

Total preparation cost is estimated ~23.3 Byen (~233 M\$) Main fraction is Hub-lab demonstration in Japan, CFS survey and detailed design (including technical feasibility study).

AWLC (Oct. 19-22, remote)

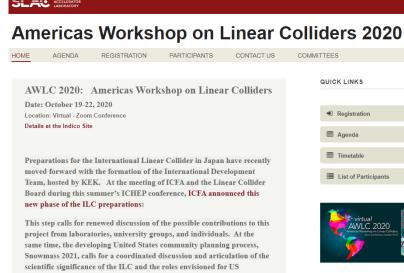
https://agenda.linearcollider.org/event/8622/timetable/#20201020

Plenary: Oct. 20 Tuesday (~2hours)

- 1. Overview of ILC accelerator design 12+3 Shin MICHIZONO
- 2. Civil engineering status 12+3 Nobuhiro Terunuma
- 3. European SRF activities, projects and outlook in view of the ILC 20+5 (TBC)
- 4. Americas' SRF activity for the ILC 20+5 Sam Posen
- 5. LCLS-II status 20+5 Marc Ross
- 6.Potential Canadian contributions to the ILC accelerator 20+5 Oliver Kester total 130 min.

Parallel: Oct. 19/20/21 (each 2 hours)

SRF 3 sessions: Yasuchika YAMAMOTO, Sam POSEN, Marc WENSKAT


Sources 1~2 sessions: Masao KURIKI, + Americas, Europe (TBC)

BDS/ATF2 2 sessions: Toshiyuki OKUGI, + Americas, Europe (TBC)

CFS 1 session: Nobuhiro TERUNUMA, John OSBONE, +Americas (TBC)

Americas' lab talk 1 session: Hugh MONTGOMERY

https://conf.slac.stanford.edu/awlc2020/

scientists. Similar planning exercises are being done in Canada and Latin America. To address all of these developments, we are planning a workshop hosted by SLAC. The workshop will be conducted virtually the

The workshop will bring together interested scientists from the global community to discuss the transition phase toward final preparations for the ILC and to formulate updated community plans and actions. The agenda will cover the present status of the ILC project and the opportunities available for participation in accelerator R&D, detector

week of October 19-23.

MEXT roadmap

On September 8, the Ministry of Education, Culture, Sports, Science and Technology (MEXT) released a draft of "Fundamental Concept for Promoting Large Scientific Research Projects – Roadmap 2020 -" and started solicitation of public comments.

https://www.kek.jp/en/topics-en/topic20200911-2/

In February this year, KEK submitted an application of the ILC project to be considered in the MEXT Roadmap process; however, KEK withdrew the application in March. We apologize for the delay in reporting this fact, because the general rule is to not disclose matters concerning the Roadmap evaluation process.

Why KEK withdraw the application to MEXT roadmap?

After the submission of the application in late February, discussions were held in the international research community, including the International Committee for Future Accelerators (ICFA), and it was decided that the ILC project will be further strongly advanced by establishing a new international development team and rebuilding the international cooperation framework. Therefore, we have withdrawn the application because the "project promotion structure through international cooperation," which was an important point of the application, has changed significantly and the project plan is expected to be completely renewed with respect to the submitted application.

The International Development Team of the ILC project was established in August, and activities under this new structure have started. KEK will continue to work diligently with the international research community to realize the ILC.