Recent developments in high-gradient SCRF

Marc Wenskat (UHH)

ILC@DESY - 23.11.2020

General R&D

See 168th ILC@DESY

[Reschke et al., Phys. Rev. Accel. Beams, 20, 042004 (2017)]

[Grassellino et al., SUST, 26, 102001 (2013)] [Grassellino et al., SUST, 30, 094004 (2017)]

[Grassellino et al., 3051, 30, 094004 (2017)

[Posen et al., Phys. Rev. Applied 13, 014024]

Cavities limited by quench

Technology Readiness Level

Developed by NASA in 1970

Status of Infusion R&D

Enables pulsed @ high energy and cw @ medium energy operation

- FNAL: No problems focus on "Quantum Technology"
- Cornell: Stopped R&D want USP & process deemed to unstable
- Jlab: Reduced R&D focus on LCLS-II HE Upgrade and new Doping Recipe
- KEK: Succeeded beginning of 2020 with first infusion after 3y and several fails
- IJC: Started Infusion R&D and had same problem as DESY
- DESY/UHH: 12 Infusion runs only 3 with unchanged performance. Major invest in (i) upgrade of ZM furnace (ii) refurbishment of HIII furnace (iii) purchase of new UHV furnace for single cells
 - TRL 4: Technology validated in lab
 - TRL 5: Technology validated in relevant environment
 - TRL 6: Technology demonstrated in relevant environment

Not just technology development – but also science!

What if...

- Infusion @ 160°C looks like a Doped Cavity (both introduce N into Nb)
- Mid-T Bake has "anti-Q-Slope" like Doped Cavity (UHV Bake @ 300°-400°C)
- Infusion below 160°C (w./ N) looks like 120°C bake (w./o. N) but different Offset

What if all these annealing procedures do the same thing!

What is "the same thing"?

Why does "this thing" influence the rf properties?

Page 5

"Impurity Tailoring"

Mixture of several models, measurements and ideas

- Hydrogen is bad tends to accumulate near the surface, form lossy hydrides
- Native Nb-Oxides seem to have lossy TLS-Oscillations
 - → Near-Surface Lattice is not in the perfect shape

- Annealings do one thing: modify concentrations of H, N, O and vacancies
 - Vacancies and interstitial N or O can trap hydrogen / prevent hydride formation
 - Modify Nb-Oxides to form less defective phases
 - Shift induced currents away from the lossy surface region by manipulating λ₁
 - Spread currents over larger volume, effectively increase applicable gradient
 - Change DOS, electron-phonon coupling and qp relaxation times

Fascinating new ideas – completely new approaches – fundamental new understanding But: Where can we go with niobium? only so far...

Beyond Niobium

Nb₃Sn

- Nb₃Sn has higher T_c (18 κ vs. 9.2 κ) and higher H_{sh} (450 vs. 220 mT) than Niobium
- Studied since 1990s (Wuppertal, Karlsruhe, Jlab) Recent "breakthrough" at FNAL [Posen et al., https://doi.org/10.1088/1361-6668/abc7f7]
- In short: Impressive behavior in terms of Q not so much in terms of E_{acc}

Simulations and Measurements exist – indicating a fundamental limit of 93 mT or 22 MV/m
Page 7

Beyond Niobium – Part II

- Nb is Type II SC
 - B_{c,1} is 170mT \rightarrow 39MV/m
 - $-B_{c,2}$ is 300mT
- B_{sh} is 230mT \rightarrow 53MV/m

What is Superheating?

- When does the flux enter?
 - Meissner to Shubnikov phase are local minima w.r.t. magnetic field as parameter

- Bean-Livingston studied intermediate state: Vortex near a surface
 - Attractive mirror-vortex
 - Repulsive surface current or "screening current"

Welcome to "our mirror world"

- Increase "mirror-surfaces"
- Insulator is important!
 - Add mirror-surfaces
 - Prevent Josephson Junctions
 - Trapp vortices in top-layers

- Use higher T_c superconductors → less losses!
- RF field on surface can be several times above B_{sh} of Nb → Higher Gradient

S-I-S R&D

- 4 Groups study these layered structures
 - IJC JLab KEK/U Tokyo <u>U Hamburg/DESY</u>
- We use a coating technique easily applicable to cavity geometry (ALD) while
 Jlab and KEK uses Sputtering techniques
- Started ~1y ago but have an excellent Network (CHyN, Nanolab, IExp, MSL) and collaborations (IJC, HZDR, RWTH, U Siegen) with promising results

DESY.

Summary

- SRF community shifts its focus a bit
 - US: Goes Quantum or LCLS-II HE, Everyone else tries to find USP
- Still no final picture It's a bit like the "Teilchenzoo" before Gell-Mann / Eightfold Way → Window of opportunity

Draw more and more material scientists and theorists into our field

Beyond Nb R&D picks up speed

Thanks for Listening!

Questions?

+ 5-10 µm removal of inner layer by chemical etching necessary

The Recipe

N-Infusion

Problem: No one cooks like Grandma

How is the performance affected?

DESY.

The whole is more than the sum of its parts

• Putting a superconductor on top of Nb with a higher T_c and/or B_{sh} is not the point

The insulator plays a crucial role!

Here comes the insulator

- Benefit is threefold!
- Let some flux enter but trap it
 - No avalanche leading to a quench
 - Majority of losses in the S layer
- S layer thinner then its λ_L otherwise its "bulk"
- More "mirrors" create more screening currents means less flux!
- Isolater thickness plays a role, too!

Why insulator is not irrelevant

- Screening current $J(x) \sim -B(x)'/\mu_0 \sim 1/\lambda_L$
- B is attenuated in finite I layer as well
- Hence screening current at I-S interface decreases and mirror current S-I interface
- Hence overall screening performance is attenuated and max. \boldsymbol{B}_{c} reduced

DESY.

Optimal thickness?

 If the thickness of the substrate and insulator is relevant – what is the optimal thickness for

highest B_{applied}?

• Depends on $B_{c,1}$ and λ_L of both S

- Here NbN - I - Nb

DESY.

What about Q_0 ?

Have majority of losses in high T_c superconductor

• R_s is reduced

$$R_{\rm s} = \left[\frac{1 + r_{\lambda}^2}{2} \sinh \frac{2d_{\rm S}}{\lambda_{\rm I}} + r_{\lambda} \left(\cosh \frac{2d_{\rm S}}{\lambda_{\rm I}} - 1 \right) \right.$$
$$\left. - \left(1 - r_{\lambda}^2 \right) \frac{d_{\rm S}}{\lambda_{\rm I}} \right] \widetilde{\gamma}_2^2 R_{\rm s}^{(\rm S)}$$
$$\left. + \widetilde{\gamma}_2^2 R_{\rm s}^{(\rm sub)} + \widetilde{\gamma}_2^2 \mu_0^2 \omega^3 \epsilon'' \lambda_2^2 d_{\rm I},$$

- Losses in I-layer is $\sim d/nm \times 10^{-7} n\Omega$
- For NbN I Nb (150nm/20nm) only $^{\sim}67\%$ at 2K

What Materials?

- Current candidates
 - as insulator: Al₂O₃ and AlN
 - as supercondutor: NbN, NbTiN, Nb₃Sn
 - Other?
- Questions to be addressed:
 - Al₂O₃ and Nb-Oxides and then coating with elevated T good idea?
 - Thermal conductivity of insulator? (e.g. strange behavior | T-dependence for NbTiN-AlN-Nb sample from Jlab at HZB QPR)
 - Mechanical stability of film(s) during HPR?