Jet energy calibration using $e^+e^- \rightarrow \gamma Z$ process at the ILC

Takahiro Mizuno sokendai

Jet Energy Reconstruction Result

Jet 1

-> Check the theta, energy, and flavor dependence.

Fit the relative difference of reconstructed jet energy with gaus+gaus+exponential Cave up to set the Mean of the 2 Caussians same

Sigma Value

Particle ID := flavor of the seed of the jet

Dependent on energy

Mean Value

Dependent on theta, energy and flavor

Mean Error

Dependent on theta and energy

Next step

- Interpret and understand the meaning of today's result.
- Show the same plot using the PFO in th same way and estimate calibration uncertainty.

Backup

Jet energy distribution

Jet mass distribution

Jet1

Jet2

Correct photon selection

Correct photon selection cut 1

Cut1: M_{2j} <125 GeV && E_{vis} >200 GeV

Correct photon selection cut 2

Wrong photons are near jet axes

Cut2: $\cos\theta(\text{Jet1} \cdot \gamma) < 0.95 \&\& \cos\theta(\text{Jet2} \cdot \gamma) < 0.95$

$M_{2j} \ distribution \ after \ all \ but \ M_{2j} \ cut$

Source (B): Error of the jet mass inputs¹⁵

Large dependence on both jet 1 mass and jet 2 mass inputs. If <8 × 10⁻⁴ accuracy is necessary, compensation to the reconstructed jet energy should be introduced.