Validation of single-particle test samples with SDHCal and comparison with AHCaL ILD software & analysis meeting 10/07/20

C. Carrillo for the SDHCAL group

The second test-dataset for the SDHCAL validation and AHCAL comparison

- This presentation is a follow up of our previous report https://agenda.linearcollider.org/event/8559/
- Details about the ILD confluence production for the second test production with the latest ilcsoft v02-01-02. https://ild.ngt.ndu.ac.jp/elog/dbd-prod/323
- We are interested again in K_L^0 particles
- For the first test production we presented results using high level objects (Physiscs objetcts). Now we have a working recipe that give us access to the low level objects (SDHCAL hits).

First look at the second test-dataset for the SDHCAL validation and AHCal comparison, K_L^0

- o2 Energy range: (1,2,5,10,20,30,40,50,60,70,80,90,100,110) GeV. /ilc/prod/ilc/mc-opt/ild/dst-merged/1-calib/ single/ILD_15_o2_v02_nobg/v02-01-02
- o1 Energy range: (1,2,5,10,20,30,40,50,60,70,80,90,100,110) GeV. (single particle dataset, in blue new datasets wrt first test sample) /ilc/prod/ilc/mc-opt/ild/dst-merged/1-calib/ single/ILD_15_o1_v02_nobg/v02-01-02
- We made a full copy of both datasets to our local cluster in CIEMAT dedicated to CALICE/ILD analysis by accessing the dataset via DIRAC.
- Using the same ilcsoft version v02-01-02 → /cvmfs/ilc.desy. de/sw/x86_64_gcc82_sl6/v02-01-02/init_ilcsoft.sh as for the central production we have produced the corresponding LCTuples.
- /pool/calice3/data/MonteCarlo/sdhcal_validation/ second_test_production/o1/dstm

Camilo Carrillo (Ciemat)

DST-merged datasets look different

First a remark about the LCtuples:

The nmcp variable accounts for the number of MC particles in a given event. In the default LCTuple this variable appears always at zero in this second test-production.

links with all results, please explore yourself:

first test production

• http:

//wwwae.ciemat.es/~carrillo/calice/indexk0o1.html

• http:

//wwwae.ciemat.es/~carrillo/calice/indexk0o2.html

second test production

- http://wwwae.ciemat.es/~carrillo/calice/ indexk0o1v2.html
- http://wwwae.ciemat.es/~carrillo/calice/ indexk0o2v2.html

Comparison o1/o2 $\otimes 1^{st}/2^{nd}$ Test Production

Comparison o1/o2 \otimes 1st/2nd Test Production, K_L^0 110 GeV

Comparison o1/o2 \otimes 1st/2nd Test Production, K_L^0 70 GeV

Comparison o1/o2 \otimes 1st/2nd Test Production, K_L^0 20 GeV

Camilo Carrillo (Ciemat)

SDHCAL validation

07/10/20 8/34

resolution and discrepancy for o1 and o2, fit results

2ndTP

1 st TP					sim p (GeV)	mean (GeV)	sigma (GeV)	resolution (%)	discrepancy(%)
sim n (GeV	mean (GeV/)	sigma (GeV)	resolution (%)	discrenancy(%)			01		
Sin p (OC V	mean (eev)	o1	resolution (76)	discrepancy(///	1	0.66	0.23	34.9%	34.0%
1	0.85	0.34	39.6%	15.1%	2	1.63	0.62	37.9%	18.5%
2	1.64	0.61	37.2%	18 3%	5	4.37	1.19	27.4%	12.7%
5	1.04	1 10	27.2%	12 5%	10	9.12	1.79	19.6%	8.9%
10	9.11	1.13	10.7%	8 0%	20	19.66	2.35	12.0%	1.7%
20	10.69	2.31	11 7%	1.6%	30	29.73	2.90	9.7%	0.9%
20	20.75	2.01	0.9%	0.9%	40	39.76	3.37	8.5%	0.6%
40	29.75	2.91	9.670	0.6%	50	49.71	3.90	7.8%	0.6%
40 E0	40.50	3.39	7.0%	1.0%	60	59.82	4.33	8.7%	17.2%
70	49.50	3.94	7.970	0.104	70	69.94	4.84	8.1%	14.5%
10	09.95	4.90	7.0%	0.1%	80	80.13	5.46	7.8%	12.6%
1	0.70	0.21	20.60/	20.0%	90	90.63	6.02	7.5%	11.0%
- 1	0.79	0.51	38.0%	20.8%	100	101.20	6.71	7.4%	9.4%
	1.48	0.56	38.2%	20.2%	110	112.00	7.21	7.1%	8.0%
5	3.80	1.14	29.6%	22.9%			o2		
10	8.28	1.88	22.7%	17.2%	1	0.81	0.31	38.4%	19.1%
20	19.24	3.18	16.5%	3.8%	2	1.51	0.56	37.2%	24.5%
30	29.51	4.11	13.9%	1.6%	5	3.92	1.16	29.6%	21.7%
40	39.27	4.85	12.4%	1.8%	10	8 40	1.90	22.6%	16.0%
60	58.95	6.27	10.6%	1.8%	20	19.49	3.19	16.4%	2.6%
/0	68.88	6.90	10.0%	1.6%	30	29.86	4.09	13.7%	0.5%
80	78.77	7.62	9.7%	1.5%	40	39.74	4.80	12.1%	0.6%
90	88.45	8.40	9.5%	1.7%	50	49.64	5.56	11 2%	0.7%
100	98.50	8.91	9.0%	1.5%	60	50.63	6.31	10.6%	0.6%
		sioma	sim n -	– mean	70	69.68	6.96	10.0%	0.5%
	resolution = $\frac{sigma}{m}$, discrepancy = $\frac{simp - mean}{m}$				80	70.63	7.70	9.7%	0.5%
mean sim p					90.66	8.40	0.1%	0.3%	
					100	09.00	10.00	5.470	1 504
					110	109.70	9.87	9.0%	0.3%

Camilo Carrillo (Ciemat)

Resolution for the four scenarions: $o1/o2 \otimes 1^{st}/2^{nd}$ **TP**

energy resolution (%)

- For the single-hit level analysis, the dst datasets are not enough. The hit information is skimmed.
- An analysis of the rec dataset was needed.
- A copy of the rec dataset to CIEMAT was done.
- /pool/calice3/data/MonteCarlo/sdhcal_validation/ second_test_production/rec/o2v2
- A customized LCTuple was produced out of rec dataset including the single hit information.
- As a reminder each hit in the SDHCAL tell us if the read energy on a given pad has passed one, two or three pre-set threshold.

SDHCAL Hit Level Analysis 110 GeV

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 100 GeV

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 090 GeV

5000 4000 n2 3000 n3 n tot=n1+n2+n3 2000 1000 400 600 800 1400 1600 1800 2000 1000 1200 number of hits passing a given threshold

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 080 GeV

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 070 GeV

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 060 GeV

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

it)

SDHCAL validation

SDHCAL Hit Level Analysis 050 GeV

SDHCAL hits per threshold distribution

4000 3500 2500 2500 2000 1500 1500 500

1000

800

1200 1400 1600 1800 2000

number of hits passing a given threshold, barrel

400 600

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 040 GeV

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 030 GeV

SDHCAL hits per threshold distribution

14000 12000 10000 n1 barrel n2 barrel 8000 n3 barrel n tot=n1+n2+n3 6000 4000 2000 600 1000 1200 1400 1600 1800 2000 200 400 800 number of hits passing a given threshold, barrel

SDHCAL hits per threshold distribution, barrel

SDHCAL validation

SDHCAL Hit Level Analysis 020 GeV

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 010 GeV

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

SDHCAL validation

SDHCAL Hit Level Analysis 005 GeV

SDHCAL hits per threshold distribution

SDHCAL hits per threshold distribution, barrel

SDHCAL Hit Level Analysis 002 GeV

SDHCAL hits per threshold distribution, barrel

Conclusions

- No relevant difference has been observed with the new test-sample for the SDHCAL/AHCAL performance.
- Next steps:
 - extra variables to check the SDHCAL calibration are under scrutiny.
 - study the SDHCAL local reconstructed objects (cluster performance).
- key point about SDHCAL in ilcsoft¹:
 - Geant4 physics model used in ilcsoft is QGSP-Bert which is not ideal to simulate SDHCAL.
 - FTF-BIC is the more appropriate for SDHCAL.

¹https://geant4.web.cern.ch/node/155

Backup

Only SDHCAL resolution observed in test-beams

CALICE collaboration, First results of the CALICE SDHCAL technological prototype, JINST **11** (2016) P04001.

Camilo Carrillo (Ciemat)

SDHCAL validation

Comparison for the two scenarions, discrepancy.

energy discrepancy

Camilo Carrillo (Ciemat)

Crystalball fit

$$\begin{aligned} A &= \left(\frac{n}{|\alpha|}\right)^n \cdot \exp\left(-\frac{|\alpha|^2}{2}\right), \\ f(x;\alpha,n,\bar{x},\sigma) &= N \cdot \begin{cases} \exp(-\frac{(x-\bar{x})^2}{2\sigma^2}), & \text{for } \frac{x-\bar{x}}{\sigma} > -\alpha \\ A \cdot (B - \frac{x-\bar{x}}{\sigma})^{-n}, & \text{for } \frac{x-\bar{x}}{\sigma} \leqslant -\alpha \end{cases} & N &= \frac{1}{\sigma(C+D)}, \\ C &= \frac{n}{|\alpha|} \cdot \frac{1}{n-1} \cdot \exp\left(-\frac{|\alpha|^2}{2}\right), \\ D &= \sqrt{\frac{\pi}{2}} \left(1 + \exp\left(\frac{-|\alpha|^2}{\sqrt{2}}\right)\right). \end{aligned}$$

FCN=3	342.074 FROM	MIGRAD STAT	US=CONVERGED	184 CALLS	- 185 TOTAL	
EVT	DADAMETED	EDM=2.61519	e-08 STRAT	EGY= 1 ERROR	MATRIX UNCERTAINTY	0.3 per cent
	NAME	VALUE		SIZE	DERIVATIVE	
60 Gel	/ thismax2.1e		gma=6.6 error:			

https://en.wikipedia.org/wiki/Crystal_Ball_function

Crystalball fit, K_L^0 , o2

K0long 20 GeV 10 10 n = 3.50049040 x = 19.0857GeV N = 963.42 a = 2.4604 n = 0.67862 0 5 20 25 35 40 reco energy (GeV) K0long 40 GeV 10³ 10 a = 5.9720eV x = 38.8605GeV N = 1599.06 u = 2.12724 n = 1.42918 10 0 20 50 70 80 reco energy (GeV)

Camilo Carrillo (Ciemat)

Summary, K_L^0 , o2

sim energy (GeV)	$\operatorname{CB} \bar{x} (\operatorname{GeV})$	CB σ (GeV)	$\frac{\sigma}{E}$ (%)
1	0.79	0.3	30
2	1.4	0.53	26
5	3.5	1.2	25
10	7.8	2.1	21
20	19	3.5	18
30	29	4.4	15
40	39	5.2	13
60	58	6.6	11
70	68	7.2	10
80	78	7.9	9.8
90	87	8.6	9.6
100	97	9.2	9.2

Summary Resolution, K_L^0

energy resolution

First look at the datasets for the SDHCAL validation, event display K_L^0 110 GeV, energy deposit in SDHCAL

List of variables available in the standard LCTuple

evenez		
evpoe,		
evpop		
euprolitie		
exproteit /		
ncnox[807];		
ncnoy[807];		
ncno2[807]]		
nenas[607];		
ncene[807]]		
neena (807))		
ncenx [907] 1		
ncapy [807])		
ncapz [807] :		
ncda3[807];		
nree!		
regididili		
ret vn [4]]		
rccov[411][10]		
renoz 41		
renas [41];		
recha [41];		
rent r [41]		
renel [41]		
renrn [4]]		

nt t	roftr(41); //[nred]	
	stpoyl i //[nstn]	
	stpozili, //[nstn]	
	steupicit //instit	
	stranging //mstri	
	atmoutile ((insth)	
	atmos (1) (finth)	
	statility (frath)	
	stmmill //insthl	
	nsch:	
	soci@llll //inschl	
	scpox[1]] //[nsch]	